Readings must be done before the date listed, so that you arrive prepared to discuss them. Required readings are marked in red with three stars (***) – students should be prepared to discuss the minutiae of these papers, and to provide critical commentary on the design and execution of the study. Recommended readings are marked by a single star (*) – students should skim these articles, to the point that they could summarize the data, methods, and key results. Other readings are optional.
- Introduction
- Methods: Econometrics and machine learning
- Data: Traditional data and satellite imagery
- Data: Mobile phone data
- Data: Internet, social media, and alternative forms of instrumentation
- Deep Dive on Ethics and Privacy
- Applications: Targeting
- Applications: Public Health and Epidemiology
- Applications: Disasters, Displacement, Crime, and Civil Unrest
- Applications: Financial Inclusion
- Optional: Agriculture, Environment & Sustainability
- Optional: Social networks
Jan 25: Introduction and Overview
Required for those who are less familiar with Python:
- Install the Anaconda version of python
- Watch 10-minute tour of pandas: https://vimeo.com/59324550
- Read McKinney (2013): Python for Data Analysis. O’Reilly Media, Inc. [focus on Chapters 3-5, 9]
- Read and complete at least the “Introduction” to this Python tutorial
- Read and complete lessons 1-7 of Learn Pandas
Optional (skim a few!)
-
De-Arteaga, M., Herlands, W., Neill, D.B., Dubrawski, A., 2018. Machine Learning for the Developing World. ACM Trans. Manage. Inf. Syst. 9, 9:1–9:14.
- Brookings, 2018. Using big data and artificial intelligence to accelerate global development.
- MacFeely, S., 2019. The Big (data) Bang: Opportunities and Challenges for Compiling SDG Indicators. Global Policy 10, 121–133. https://doi.org/10.1111/1758-5899.12595
- Rathinam, F, Khatua, S, Siddiqui, Z, Malik, M, Duggal, P, Watson, S, Vollenweider, X. 2020. Using big data for evaluating development outcomes: a systematic map [Online]. 3ie. Available at: https://gapmaps.3ieimpact.org/evidence-maps/big-data-systematic-map
- Smith, M., Neupane, S., 2018. Artificial intelligence and human development : toward a research agenda.
- UN Development Group, 2017. Guidance Note on Big Data for Achievement of the 2030 Agenda: Data Privacy, Ethics and Protection
- Data2X, 2017. Big data and the well-being of women and girls
- UN Global Pulse, 2016. Big data for development and humanitarian action: Towards responsible governance
- UN Global Pulse, 2016. Integrating Big Data into the Monitoring and Evaluation of Development Programmes
- Serajuddin, U., Uematsu, H., Wieser, C., Yoshida, N., Dabalen, A.L., 2015. Data deprivation : another deprivation to end (No. WPS7252). The World Bank.
- UN Global Pulse, 2016. A Guide to Data Innovation for Development – From idea to proof-of-concept
- UN ESCAP, 2015. Big Data and the 2030 Agenda for Sustainable Development
- Data2X, 2014. The Landscape of Big Data for Development
- United Nations, 2014. A World that Counts: Mobilising the Data Revolution for Sustainable Development
-
Weber, I., Imran, M., Ofli, F., Mrad, F., Colville, J., Fathallah, M., Chaker, A., Ahmed, W.S., 2021. Non-traditional data sources: providing insights into sustainable development. Commun. ACM 64, 88–95. https://doi.org/10.1145/3447739
- World Bank, 2014. Big Data in Action for Development.
-
Bank, W., 2021. World Development Report 2021: Data for Better Lives. The World Bank.
- UN Global Pulse, 2013. Big Data for Development: A primer
- UN Global Pulse, 2012. Big Data for Development: Opportunities & Challenges
- USAID 2021. Managing Machine Learning Projects in International Development: A Practical Guide
- Explore the list of projects and reports at UN Global Pulse.
February 1: Methodological primer: Econometrics & Machine Learning
Required readings
- (***) Domingos, P., 2012. A Few Useful Things to Know About Machine Learning. Communications of the ACM 55, 78–87. doi:10.1145/2347736.2347755
- (***) Imbens, Guido W., and Jeffrey M. Wooldridge. 2009. “Recent Developments in the Econometrics of Program Evaluation.” Journal of Economic Literature, 47(1): 5-86.
- LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521, 436–444. doi:10.1038/nature14539
- Mitzenmacher, M. How to read a research paper
Recommended reading for those less familiar with machine learning:
- Athey, S., 2018. The Impact of Machine Learning on Economics, especially Sections 1-3.
- Mullainathan, S., Spiess, J., 2017. Machine Learning: An Applied Econometric Approach. Journal of Economic Perspectives 31, 87–106. https://doi.org/10.1257/jep.31.2.87
- Varian, H.R., 2014. Big Data: New Tricks for Econometrics. The Journal of Economic Perspectives 28, 3–27. doi:10.1257/jep.28.2.3
- Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A., Liu, B., Yu, P.S., Zhou, Z.-H., Steinbach, M., Hand, D.J., Steinberg, D., 2008. Top 10 algorithms in data mining. Knowledge and Information Systems 14, 1–37. doi:10.1007/s10115-007-0114-2
- This tutorial on deep learning
Recommended reading for those less familiar with development economics:
-
Athey, S., Imbens, G.W., 2017. The State of Applied Econometrics: Causality and Policy Evaluation. Journal of Economic Perspectives 31, 3–32.
- Banerjee, A.V., Duflo, E., 2007. The economic lives of the poor. Journal of Economic Perspectives 21, 141–167.
- Duflo, E., Glennerster, R., Kremer, M., 2007. Using randomization in development economics research: A toolkit. Handbook of Development Economics 4, 3895–3962.
- Chapters 4-6 in Khandker, S.R., Koolwal, G.B., Samad, H.A., 2009. Handbook on Impact Evaluation: Quantitative Methods and Practices. World Bank Publications.
Optional readings
- Athey, S., 2017. Beyond prediction: Using big data for policy problems. Science 355, 483–485. doi:10.1126/science.aal4321
- Chapter 4.6 on Instrumental Variables and Chapter 25.6 on Regression Discontinuity in Cameron, A.C., Trivedi, P.K., 2005. Microeconometrics: Methods and Applications. Cambridge University Press.
-
Dell, M., 2010. The Persistent Effects of Peru’s Mining Mita. Econometrica 78, 1863–1903.
- Duflo, E., 2001. Schooling and Labor Market Consequences of School Construction in Indonesia: Evidence from an Unusual Policy Experiment. The American Economic Review 91, 795–813. doi:10.2307/2677813
-
Einav, L., Levin, J., 2014. Economics in the age of big data. Science 346, 1243089. https://doi.org/10.1126/science.1243089
-
Einav, L., Levin, J., 2014. The Data Revolution and Economic Analysis. Innovation Policy and the Economy 14, 1–24. https://doi.org/10.1086/674019
- King, G. (2011). Ensuring the Data-Rich Future of the Social Sciences. Science.
-
Kleinberg, J., Lakkaraju, H., Leskovec, J., Ludwig, J., Mullainathan, S., 2018. Human Decisions and Machine Predictions. Q J Econ 133, 237–293.
- Lee, D.S., Lemieux, T., 2009. Regression Discontinuity Designs in Economics (Working Paper No. 14723). National Bureau of Economic Research. Alternatively, read this more practical introduction.
- Rudin et al., 2014. “Discovery with Data: Leveraging Statistics with Computer Science to Transform Science and Society.” American Statistical Association, July 2, 2014
-
Solis, A., 2017. Credit Access and College Enrollment. Journal of Political Economy 125, 562–622.
February 8: Data Sources: Traditional Data & Satellite Imagery
Required readings
- (***) Jean, N., Burke, M., Xie, M., Davis, W.M., Lobell, D.B., Ermon, S., 2016. Combining satellite imagery and machine learning to predict poverty. Science 353, 790–794. doi:10.1126/science.aaf7894. Make sure to also read Supplemental Materials.
- Chapter 1 (Measuring Poverty) of Banerjee, A.V., Benabou, R., Mookherjee, D. (Eds.), 2006. Understanding Poverty, 1 edition. ed. Oxford University Press, Oxford ; New York.
Recommended reading
- Yeh, C., Perez, A., Driscoll, A., Azzari, G., Tang, Z., Lobell, D., Ermon, S., Burke, M., 2020. Using publicly available satellite imagery and deep learning to understand economic well-being in Africa. Nature Communications 11, 2583. https://doi.org/10.1038/s41467-020-16185-w
- Engstrom, R., Hersh, J.S., Newhouse, D.L., 2017. Poverty from space : using high-resolution satellite imagery for estimating economic well-being (No. WPS8284). The World Bank.
Optional readings
- Abitbol, J.L., Karsai, M., 2020. Interpretable socioeconomic status inference from aerial imagery through urban patterns. Nature Machine Intelligence 1–9. https://doi.org/10.1038/s42256-020-00243-5
-
Ayush, K., Uzkent, B., Tanmay, K., Burke, M., Lobell, D., Ermon, S., 2021. Efficient Poverty Mapping using Deep Reinforcement Learning. arXiv:2006.04224 [cs].
- Babenko, B., Hersh, J., Newhouse, D., Ramakrishnan, A., Swartz, T., 2017. Poverty Mapping Using Convolutional Neural Networks Trained on High and Medium Resolution Satellite Images, With an Application in Mexico. arXiv:1711.06323 [cs, stat].
- BBC News, 2018. Aerial photos reveal the stark divide between rich and poor. BBC News.
- Bedi, T., Coudouel, A., Simler, K., 2007. More Than a Pretty Picture: Using Poverty Maps to Design Better Policies and Interventions. World Bank Publications.
- Blumenstock, J.E., 2016. Fighting poverty with data. Science 353, 753–754. doi:10.1126/science.aah5217
- Bosco, C., Alegana, V., Bird, T., Pezzulo, C., Bengtsson, L., Sorichetta, A., Steele, J., Hornby, G., Ruktanonchai, C., Ruktanonchai, N., Wetter, E., Tatem, A.J., 2017. Exploring the high-resolution mapping of gender-disaggregated development indicators. Journal of The Royal Society Interface 14, 20160825. https://doi.org/10.1098/rsif.2016.0825
- Burgess, R., Hansen, M., Olken, B.A., Potapov, P., Sieber, S., 2012. The Political Economy of Deforestation in the Tropics. The Quarterly Journal of Economics. doi:10.1093/qje/qjs034
- Burgess, R., Costa, F.J.M., Olken, B., 2019. The Brazilian Amazon’s Double Reversal of Fortune (No. 67xg5), SocArXiv, SocArXiv. Center for Open Science.
- Burke, M., Driscoll, A., Lobell, D., Ermon, S., 2020. Using Satellite Imagery to Understand and Promote Sustainable Development (No. w27879). National Bureau of Economic Research. https://doi.org/10.3386/w27879
- Cadamuro, G., Muhebwa, A., Taneja, J., 2018. Assigning a Grade: Accurate Measurement of Road Quality Using Satellite Imagery. arXiv:1812.01699
- Chen, X., Nordhaus, W.D., 2011. Using luminosity data as a proxy for economic statistics. PNAS 108, 8589–8594. doi:10.1073/pnas.1017031108
-
Chi, G., Fang, H., Chatterjee, S., Blumenstock, J.E., 2021. Micro-Estimates of Wealth for all Low- and Middle-Income Countries. In Submission. (pdf on bCourses)
- Crespo Cuaresma, J., Danylo, O., Fritz, S., Hofer, M., Kharas, H., Laso Bayas, J.C., 2020. What do we know about poverty in North Korea? Palgrave Communications 6, 1–8. https://doi.org/10.1057/s41599-020-0417-4
- Deaton, A., 1997. The Analysis of Household Surveys: A Microeconometric Approach to Development Policy. World Bank Publications.
- Deaton, A., Zaidi, S., 2002. Guidelines for constructing consumption aggregates for welfare analysis. World Bank Publications.
- Doll, C.N.H., Muller, J.-P., Morley, J.G., 2006. Mapping regional economic activity from night-time light satellite imagery. Ecological Economics 57, 75–92. doi:10.1016/j.ecolecon.2005.03.007
- Donaldson, D., Storeygard, A., 2016. The View from Above: Applications of Satellite Data in Economics. Journal of Economic Perspectives 30, 171–198. doi:10.1257/jep.30.4.171
-
Elbers, C., Lanjouw, J.O., Lanjouw, P., 2003. Micro–Level Estimation of Poverty and Inequality. Econometrica 71, 355–364. https://doi.org/10.1111/1468-0262.00399
-
Gadiraju, K.K., Vatsavai, R.R., Kaza, N., Wibbels, E., Krishna, A., 2018. Machine Learning Approaches for Slum Detection Using Very High Resolution Satellite Images, in: 2018 IEEE International Conference on Data Mining Workshops (ICDMW). Presented at the 2018 IEEE International Conference on Data Mining Workshops (ICDMW), pp. 1397–1404. https://doi.org/10.1109/ICDMW.2018.00198
-
Ganguli, S., Dunnmon, J., Hau, D., 2019. Predicting Food Security Outcomes Using Convolutional Neural Networks (CNNs) for Satellite Tasking. arXiv:1902.05433 [cs].
-
Han, S., Ahn, D., Park, Sungwon, Yang, J., Lee, S., Kim, J., Yang, H., Park, Sangyoon, Cha, M., 2020. Learning to Score Economic Development from Satellite Imagery, in: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’20. Association for Computing Machinery, New York, NY, USA, pp. 2970–2979. https://doi.org/10.1145/3394486.3403347
- Head, A., Manguin, M., Tran, N., Blumenstock, J.E., 2017. Can Human Development be Measured with Satellite Imagery? in: Proceedings of the Ninth ACM/IEEE International Conference on Information and Communication Technologies and Development, ICTD ’17. ACM, Lahore, Pakistan.
-
Helber, P., Gram-Hansen, B., Varatharajan, I., Azam, F., Coca-Castro, A., Kopackova, V., Bilinski, P., 2018. Mapping Informal Settlements in Developing Countries with Multi-resolution, Multi-spectral Data. arXiv:1812.00812 [cs, stat].
- Henderson, J.V., Storeygard, A., Weil, D.N., 2012. Measuring Economic Growth from Outer Space. American Economic Review 102, 994–1028. doi:10.1257/aer.102.2.994
-
Jean, N., Wang, S., Samar, A., Azzari, G., Lobell, D., Ermon, S., 2019. Tile2Vec: Unsupervised Representation Learning for Spatially Distributed Data. AAAI 33, 3967–3974. https://doi.org/10.1609/aaai.v33i01.33013967
- Jerven, M., 2014. Benefits and Costs of the Data for Development Targets for the Post-2015 Development Agenda, Data for Development Assessment Paper. Copenhagen Consensus Center.
- Jerven, M., 2013. Poor numbers: how we are misled by African development statistics and what to do about it. Cornell University Press.
- Lee, Y.S., 2018. International Isolation and Regional Inequality: Evidence from Sanctions on North Korea. Journal of Urban Economics.
-
Liu, P., Liu, X., Liu, M., Shi, Q., Yang, J., Xu, X., Zhang, Y., 2019. Building footprint extraction from high-resolution images via spatial residual inception convolutional neural network. Remote Sensing 11, 830.
- Mellander, C., Lobo, J., Stolarick, K., Matheson, Z., 2015. Night-Time Light Data: A Good Proxy Measure for Economic Activity? PLOS ONE 10, e0139779. https://doi.org/10.1371/journal.pone.0139779
-
Mueller, H., Groger, A., Hersh, J., Matranga, A., Serrat, J., 2020. Monitoring War Destruction from Space: A Machine Learning Approach. arXiv:2010.05970 [cs, econ, q-fin].
-
Nieves, J.J., Sorichetta, A., Linard, C., Bondarenko, M., Steele, J., Stevens, F., Gaughan, A.E., Carioli, A., Clarke, D., Esch, T., Tatem, A.J., 2018. Modelling Built-Settlements between Remotely-Sensed Observations. https://doi.org/10.20944/preprints201812.0250.v1
- Perez, A., Yeh, C., Azzari, G., Burke, M., Lobell, D., Ermon, S., 2017. Poverty Prediction with Public Landsat 7 Satellite Imagery and Machine Learning. arXiv:1711.03654.
-
Pinkovskiy, M., Sala-i-Martin, X., 2016. Lights, Camera … Income! Illuminating the National Accounts-Household Surveys Debate. Quarterly Journal of Economics 131, 579–631.
- Ravallion, M., 2016. The Economics of Poverty: History, Measurement, and Policy, 1 edition. ed. Oxford University Press, New York.
-
Ravallion, M., 2019. On Measuring Global Poverty (Working Paper No. 26211). National Bureau of Economic Research. https://doi.org/10.3386/w26211
-
Rolf, E., Proctor, J., Carleton, T., Bolliger, I., Shankar, V., Ishihara, M., Recht, B., Hsiang, S., 2020. A Generalizable and Accessible Approach to Machine Learning with Global Satellite Imagery (No. w28045). National Bureau of Economic Research. https://doi.org/10.3386/w28045
- Stevens, F.R., Gaughan, A.E., Linard, C., Tatem, A.J., 2015. Disaggregating Census Data for Population Mapping Using Random Forests with Remotely-Sensed and Ancillary Data. PLOS ONE 10, e0107042. doi:10.1371/journal.pone.0107042
-
Suel, E., Polak, J.W., Bennett, J.E., Ezzati, M., 2019. Measuring social, environmental and health inequalities using deep learning and street imagery. Scientific Reports 9, 6229. https://doi.org/10.1038/s41598-019-42036-w
- Tarozzi, A., Deaton, A., 2009. Using census and survey data to estimate poverty and inequality for small areas. The review of economics and statistics 91, 773–792.
-
Tiecke, T.G., Liu, X., Zhang, A., Gros, A., Li, N., Yetman, G., Kilic, T., Murray, S., Blankespoor, B., Prydz, E.B., Dang, H.-A.H., 2017. Mapping the world population one building at a time. arXiv:1712.05839 [cs].
- USAID, 2015. Guide to DHS Statistics (English).
- Wardrop, N.A., Jochem, W.C., Bird, T.J., Chamberlain, H.R., Clarke, D., Kerr, D., Bengtsson, L., Juran, S., Seaman, V., Tatem, A.J., 2018. Spatially disaggregated population estimates in the absence of national population and housing census data. PNAS 201715305. https://doi.org/10.1073/pnas.1715305115
- Watmough, G.R., Marcinko, C.L.J., Sullivan, C., Tschirhart, K., Mutuo, P.K., Palm, C.A., Svenning, J.-C., 2019. Socioecologically informed use of remote sensing data to predict rural household poverty. PNAS 116, 1213–1218. https://doi.org/10.1073/pnas.1812969116
- Weidmann, N.B., Schutte, S., 2017. Using night light emissions for the prediction of local wealth. Journal of Peace Research 54, 125–140.
- Wurm, M., Stark, T., Zhu, X.X., Weigand, M., Taubenböck, H., 2019. Semantic segmentation of slums in satellite images using transfer learning on fully convolutional neural networks. ISPRS Journal of Photogrammetry and Remote Sensing 150, 59–69. https://doi.org/10.1016/j.isprsjprs.2019.02.006
- Xie, M., Jean, N., Burke, M., Lobell, D., Ermon, S., 2015. Transfer Learning from Deep Features for Remote Sensing and Poverty Mapping. arXiv:1510.00098 [cs].
February 15: No Class (President’s Day)
February 22: Data Sources: Mobile phones
Required readings
- (***) Blumenstock, J., Cadamuro, G., On, R., 2015. Predicting poverty and wealth from mobile phone metadata. Science 350, 1073–1076. doi:10.1126/science.aac4420, Make sure to also read Supplemental Materials.
Recommended readings
- Wesolowski, A., Eagle, N., Noor, A.M., Snow, R.W., Buckee, C.O., 2012. Heterogeneous Mobile Phone Ownership and Usage Patterns in Kenya. PLOS ONE 7, e35319. doi:10.1371/journal.pone.0035319
- UN Global Pulse, 2017. The State of Mobile Data for Social Good
Optional readings
-
Barnett, I., Khanna, T., Onnela, J.-P., 2016. Social and Spatial Clustering of People at Humanity’s Largest Gathering. PLOS ONE 11, e0156794. https://doi.org/10.1371/journal.pone.0156794
- Blondel, V.D., Decuyper, A., Krings, G., 2015. A survey of results on mobile phone datasets analysis. EPJ Data Sci. 4, 10. doi:10.1140/epjds/s13688-015-0046-0
- Blumenstock, J.E., Eagle, N., 2012. Divided We Call: Disparities in Access and Use of Mobile Phones in Rwanda. Information Technology and International Development 8, 1–16.
- Bogomolov, A., Lepri, B., Larcher, R., Antonelli, F., Pianesi, F., Pentland, A., 2016. Energy consumption prediction using people dynamics derived from cellular network data. EPJ Data Science 5, 1.
- Decuyper, A., Rutherford, A., Wadhwa, A., Bauer, J.-M., Krings, G., Gutierrez, T., Blondel, V.D., Luengo-Oroz, M.A., 2014. Estimating Food Consumption and Poverty Indices with Mobile Phone Data. arXiv preprint arXiv:1412.2595.
- de Montjoye, Y.-A., Hidalgo, C.A., Verleysen, M., Blondel, V.D., 2013. Unique in the Crowd: The privacy bounds of human mobility. Scientific Reports 3. doi:10.1038/srep01376
- Deville, P., Linard, C., Martin, S., Gilbert, M., Stevens, F.R., Gaughan, A.E., Blondel, V.D., Tatem, A.J., 2014. Dynamic population mapping using mobile phone data. PNAS 111, 15888–15893. doi:10.1073/pnas.1408439111
- Dong, Y., Yang, Y., Tang, J., Yang, Y., Chawla, N.V., 2014. Inferring User Demographics and Social Strategies in Mobile Social Networks, in: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’14. ACM, New York, NY, USA, pp. 15–24. doi:10.1145/2623330.2623703
- Douglass, R.W., Meyer, D.A., Ram, M., Rideout, D., Song, D., 2015. High resolution population estimates from telecommunications data. EPJ Data Sci. 4, 4. https://doi.org/10.1140/epjds/s13688-015-0040-6
- Eagle, N., Macy, M., Claxton, R., 2010. Network Diversity and Economic Development. Science 328, 1029–1031. And Supplementary Materials
- Frias-Martinez, V., Virseda, J., 2012. On the relationship between socio-economic factors and cell phone usage, in: Proceedings of the Fifth International Conference on Information and Communication Technologies and Development, ICTD ’12. ACM, New York, NY, USA, pp. 76–84. doi:10.1145/2160673.2160684
- GSMA, 2021. State of the Industry Report on Mobile Money, 2021.
- GSMA, 2020. Mobile Economy 2020.
- Hernandez, M., Hong, L., Frias-Martinez, V., Frias-Martinez, E., 2017. Estimating poverty using cell phone data : evidence from Guatemala (Policy Research Working Paper Series No. 7969). The World Bank.
- Hong, L., Frías-Martínez, E., Frías-Martínez, V., 2016. Topic Models to Infer Socio-Economic Maps, in: AAAI.
- Jahani, E., Sundsøy, P., Bjelland, J., Bengtsson, L., Pentland, A. “Sandy”, Montjoye, Y.-A. de, 2017. Improving official statistics in emerging markets using machine learning and mobile phone data. EPJ Data Sci. 6, 3. https://doi.org/10.1140/epjds/s13688-017-0099-3
- Kang, C., Liu, Y., Ma, X., Wu, L., 2012. Towards Estimating Urban Population Distributions from Mobile Call Data. Journal of Urban Technology 19, 3–21. https://doi.org/10.1080/10630732.2012.715479
- Kenya Daily Nation, 2013. US Scientists ‘Spied’ on Phone Users
- Lenormand, M., Picornell, M., Cantú-Ros, O.G., Louail, T., Herranz, R., Barthelemy, M., Frías-Martínez, E., Miguel, M.S., Ramasco, J.J., 2015. Comparing and modelling land use organization in cities. Royal Society Open Science 2, 150449. doi:10.1098/rsos.150449
-
Liang, L., Shrestha, R., Ghosh, S., Webb, P., 2020. Using mobile phone data helps estimate community-level food insecurity: Findings from a multi-year panel study in Nepal. PLOS ONE 15, e0241791. https://doi.org/10.1371/journal.pone.0241791
- Netmob 2015 Book of Abstracts: Oral papers, Posters
- Njuguna, C., McSharry, P., 2017. Constructing spatiotemporal poverty indices from big data. Journal of Business Research 70, 318–327. doi:10.1016/j.jbusres.2016.08.005
- Pokhriyal, N., Jacques, D.C., 2017. Combining disparate data sources for improved poverty prediction and mapping. PNAS 114, E9783–E9792. https://doi.org/10.1073/pnas.1700319114
- Schmid, T., Bruckschen, F., Salvati, N., Zbiranski, T., 2017. Constructing sociodemographic indicators for national statistical institutes by using mobile phone data: estimating literacy rates in Senegal. J. R. Stat. Soc. A 180, 1163–1190. https://doi.org/10.1111/rssa.12305
-
Slavchevska, V., Tyszler, M., Burra, D.D., Seymour, G., Sementsov, D., Van Lierde, A., King, B., 2021. Can call detail records provide insights into women’s empowerment? A case study from Uganda. White paper / Case Study.
- Smith-Clarke, C., Mashhadi, A., Capra, L., 2014. Poverty on the Cheap: Estimating Poverty Maps Using Aggregated Mobile Communication Networks, in: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’14. ACM, New York, NY, USA, pp. 511–520. doi:10.1145/2556288.2557358
- J.E. Steele, P. Sundsoy, C. Pezzulo, V. Alegana, T. Bird, J. Blumenstock, J. Bjelland, K. Engo-Monsen, YA de Montjoye, A. Iqbal, K. Hadiuzzaman, X. Lu, E. Wetter, A.J. Tatem, and L. Bengtsson, 2017. Mapping poverty using mobile phone and satellite data. Journal of The Royal Society Interface 14, 127.
- Sundsøy, P., Bjelland, J., Reme, B.-A., Jahani, E., Wetter, E., Bengtsson, L., 2017. Towards Real-Time Prediction of Unemployment and Profession, in: Social Informatics, Lecture Notes in Computer Science. Presented at the International Conference on Social Informatics, Springer, Cham, pp. 14–23. https://doi.org/10.1007/978-3-319-67256-4_2
- Sundsøy, P., Bjelland, J., Reme, B.-A., Jahani, E., Wetter, E., Bengtsson, L., 2016. Estimating individual employment status using mobile phone network data. arXiv:1612.03870 [cs].
- Toole JL, Lin Y-R, Muehlegger E, Shoag D, Gonzalez MC, Lazer D., 2015. Tracking Employment Shocks using Mobile Phone Data. J. R. Soc. Interface. 2015;12 (107).
March 1: Data Sources: Internet, social media, and alternative forms of instrumentation
Required readings
- (***) Fatehkia, M., Tingzon, I., Orden, A., Sy, S., Sekara, V., Garcia-Herranz, M., Weber, I., 2020. Mapping socioeconomic indicators using social media advertising data. EPJ Data Sci. 9, 1–15. https://doi.org/10.1140/epjds/s13688-020-00235-w
- (***) Lazer, D., Kennedy, R., King, G., Vespignani, A., 2014. The parable of Google Flu: traps in big data analysis. Science 343.
Recommended readings
- Gebru, T., Krause, J., Wang, Y., Chen, D., Deng, J., Aiden, E.L., Fei-Fei, L., 2017. Using Deep Learning and Google Street View to Estimate the Demographic Makeup of the US. arXiv:1702.06683 [cs]
- Lampos, V., Aletras, N., Geyti, J.K., Zou, B., Cox, I.J., 2016. Inferring the Socioeconomic Status of Social Media Users Based on Behaviour and Language, in: Advances in Information Retrieval. Presented at the European Conference on Information Retrieval, Springer, Cham, pp. 689–695. See also associated blog post.
Optional readings
- Ackermann, K., Angus, S.D., Raschky, P.A., 2017. The Internet as Quantitative Social Science Platform: Insights from a Trillion Observations. arXiv:1701.05632.
-
Alatas, V., Chandrasekhar, A.G., Mobius, M., Olken, B.A., Paladines, C., 2019. When Celebrities Speak: A Nationwide Twitter Experiment Promoting Vaccination In Indonesia. National Bureau of Economic Research Working Paper Series.
- Althoff, T., Sosič, R., Hicks, J.L., King, A.C., Delp, S.L., Leskovec, J., 2017. Large-scale physical activity data reveal worldwide activity inequality. Nature 547. https://doi.org/10.1038/nature23018
- Antenucci, D., Cafarella, M., Levenstein, M., Ré, C., Shapiro, M.D., 2014. Using Social Media to Measure Labor Market Flows (Working Paper No. 20010). National Bureau of Economic Research.
- Aral, S., Nicolaides, C., 2017. Exercise contagion in a global social network. Nature Communications 8, 14753. https://doi.org/10.1038/ncomms14753
- Awad, E., Dsouza, S., Kim, R., Schulz, J., Henrich, J., Shariff, A., Bonnefon, J.-F., Rahwan, I., 2018. The Moral Machine experiment. Nature 563, 59.
- Blumenstock, J.E., Keleher, N., 2015. The Price is Right? Statistical Evaluation of a Crowd-sourced Market Information System in Liberia, in: Proceedings of the 2015 Annual Symposium on Computing for Development, DEV ’15. ACM, New York, NY, USA, pp. 117–125. doi:10.1145/2830629.2830647
- Brewer, E., Demmer, M., Ho, M., Honicky, R.J., Pal, J., Plauche, M., Surana, S., 2006. The challenges of technology research for developing regions. Pervasive Computing, IEEE 5, 15–23. doi:10.1109/MPRV.2006.40
- Business for Social Responsibility (2018). Human Rights Impact Assessment: Facebook in Myanmar
- Cattuto, C., Van den Broeck, W., Barrat, A., Colizza, V., Pinton, J.-F., Vespignani, A., 2010. Dynamics of Person-to-Person Interactions from Distributed RFID Sensor Networks. PLoS ONE 5, e11596. doi:10.1371/journal.pone.0011596
- Chakraborty, S., Venkataraman, A., Jagabathula, S., Subramanian, L., 2016. Predicting Socio-Economic Indicators Using News Events, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16. ACM, New York, NY, USA, pp. 1455–1464. https://doi.org/10.1145/2939672.2939817
- Choi, H., Varian, H., 2012. Predicting the Present with Google Trends. Economic Record 88, 2–9. doi:10.1111/j.1475-4932.2012.00809.x
- De Choudhury, M., Gamon, M., Counts, S., Horvitz, E., 2013. Predicting Depression via Social Media, in: ICWSM. p. 2.
- Dong, L., Chen, S., Cheng, Y., Wu, Z., Li, C., Wu, H., 2016. Measuring Economic Activities of China with Mobile Big Data. arXiv:1607.04451/
- Dong, X., Meyer, J., Shmueli, E., Bozkaya, B., Pentland, A., 2018. Methods for quantifying effects of social unrest using credit card transaction data. EPJ Data Sci. 7, 8. https://doi.org/10.1140/epjds/s13688-018-0136-x
- Eagle, N., 2009. txteagle: Mobile Crowdsourcing, in: Internationalization, Design and Global Development. Presented at the International Conference on Internationalization, Design and Global Development, Springer, Berlin, Heidelberg, pp. 447–456.
-
Fatehkia, M., Kashyap, R., Weber, I., 2018. Using Facebook ad data to track the global digital gender gap. World Development 107, 189–209.
- França, U., Sayama, H., Mcswiggen, C., Daneshvar, R., Bar-Yam, Y., 2016. Visualizing the “heartbeat” of a city with tweets. Complexity 21, 280–287. doi:10.1002/cplx.21687
- Ginsberg, J., Mohebbi, M.H., Patel, R.S., Brammer, L., Smolinski, M.S., Brilliant, L., 2009. Detecting influenza epidemics using search engine query data. Nature 457, 1012–1014. doi:10.1038/nature07634
- Glaeser, E.L., Hillis, A., Kominers, S.D., Luca, M., 2016. Crowdsourcing City Government: Using Tournaments to Improve Inspection Accuracy. American Economic Review 106, 114–118. doi:10.1257/aer.p20161027
-
Glaeser, E.L., Kim, H., Luca, M., 2017. Nowcasting the Local Economy: Using Yelp Data to Measure Economic Activity (Working Paper No. 24010). National Bureau of Economic Research. https://doi.org/10.3386/w24010
- Glaeser, E.L., Kominers, S.D., Luca, M., Naik, N., 2015. Big Data and Big Cities: The Promises and Limitations of Improved Measures of Urban Life (Working Paper No. 21778). National Bureau of Economic Research.
- Goel, S., Hofman, J.M., Lahaie, S., Pennock, D.M., Watts, D.J., 2010. Predicting consumer behavior with Web search. Proceedings of the National Academy of Sciences 107, 17486–17490.
- Grimmer, J., Stewart, B.M., 2013. Text as Data: The Promise and Pitfalls of Automatic Content Analysis Methods for Political Texts. Political Analysis mps028. doi:10.1093/pan/mps028
- Gupta, A., Thies, W., Cutrell, E., Balakrishnan, R., 2012. mClerk: Enabling Mobile Crowdsourcing in Developing Regions, in: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’12. ACM, New York, NY, USA, pp. 1843–1852. doi:10.1145/2207676.2208320
-
Hjort, J., Poulsen, J., 2019. The Arrival of Fast Internet and Employment in Africa. American Economic Review 109, 1032–1079. https://doi.org/10.1257/aer.20161385
- King, G., Pan, J., Roberts, M.E., 2013. How Censorship in China Allows Government Criticism but Silences Collective Expression. American Political Science Review 107, 326–343. doi:10.1017/S0003055413000014
- King, G., Pan, J., Roberts, M.E., 2014. Reverse-engineering censorship in China: Randomized experimentation and participant observation. Science 345, 1251722.
-
Lampos, V., Yom-Tov, E., Pebody, R., Cox, I.J., 2015. Assessing the impact of a health intervention via user-generated Internet content. Data Min Knowl Disc 29, 1434–1457. https://doi.org/10.1007/s10618-015-0427-9
-
Lee, J., Grosz, D., Uzkent, B., Zeng, S., Burke, M., Lobell, D., Ermon, S., 2021. Predicting Livelihood Indicators from Community-Generated Street-Level Imagery. arXiv:2006.08661 [cs].
- Llorente, A., Garcia-Herranz, M., Cebrian, M., Moro, E., 2015. Social Media Fingerprints of Unemployment. PLOS ONE 10, e0128692. doi:10.1371/journal.pone.0128692. Also skim supplementary materials.
-
Miluzzo, E., Lane, N.D., Fodor, K., Peterson, R., Lu, H., Musolesi, M., Eisenman, S.B., Zheng, X., Campbell, A.T., 2008. Sensing meets mobile social networks: the design, implementation and evaluation of the cenceme application, in: Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems. pp. 337–350.
- Naik, N., Philipoom, J., Raskar, R., Hidalgo, C., 2014. Streetscore–Predicting the Perceived Safety of One Million Streetscapes, in: 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops. IEEE, pp. 793–799.
- Naik, N., Kominers, S.D., Raskar, R., Glaeser, E.L., Hidalgo, C.A., 2015. Do People Shape Cities, or Do Cities Shape People? The Co-evolution of Physical, Social, and Economic Change in Five Major U.S. Cities (Working Paper No. 21620). National Bureau of Economic Research.
- Naik, N., Raskar, R., Hidalgo, C.A., 2016. Cities Are Physical Too: Using Computer Vision to Measure the Quality and Impact of Urban Appearance. American Economic Review 106, 128–132. doi:10.1257/aer.p20161030
- Naik, N., Kominers, S.D., Raskar, R., Glaeser, E.L., Hidalgo, C.A., 2017. Computer vision uncovers predictors of physical urban change. PNAS 114, 7571–7576. https://doi.org/10.1073/pnas.1619003114
- Norbutas, L., Corten, R., 2017. Network structure and economic prosperity in municipalities: A large-scale test of social capital theory using social media data. Social Networks. https://doi.org/10.1016/j.socnet.2017.06.002
- O’Connor, B., Balasubramanyan, R., Routledge, B.R., Smith, N.A., 2010. From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series. Fourth International AAAI Conference on Weblogs and Social Media1.
- Olson, D.R., Konty, K.J., Paladini, M., Viboud, C., Simonsen, L., 2013. Reassessing Google Flu Trends Data for Detection of Seasonal and Pandemic Influenza: A Comparative Epidemiological Study at Three Geographic Scales. PLOS Computational Biology 9, e1003256. doi:10.1371/journal.pcbi.1003256
- Onnela, J.-P., Waber, B.N., Pentland, A., Schnorf, S., Lazer, D., 2014. Using sociometers to quantify social interaction patterns. Sci. Rep. 4. doi:10.1038/srep05604
- Proserpio, D., Counts, S., Jain, A., 2016. The Psychology of Job Loss: Using Social Media Data to Characterize and Predict Unemployment, in: Proceedings of the 8th ACM Conference on Web Science, WebSci ’16. ACM, New York, NY, USA, pp. 223–232. doi:10.1145/2908131.2913008
- Patel, N.N., Stevens, F.R., Huang, Z., Gaughan, A.E., Elyazar, I., Tatem, A.J., 2017. Improving Large Area Population Mapping Using Geotweet Densities. Trans. in GIS 21, 317–331. https://doi.org/10.1111/tgis.12214
- Raza, A.A., Ul Haq, F., Tariq, Z., Pervaiz, M., Razaq, S., Saif, U., Rosenfeld, R., 2013. Job Opportunities Through Entertainment: Virally Spread Speech-based Services for Low-literate Users, in: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’13. ACM, New York, NY, USA, pp. 2803–2812. https://doi.org/10.1145/2470654.2481389
- Sheehan, E., Meng, C., Tan, M., Uzkent, B., Jean, N., Lobell, D., Burke, M., Ermon, S., 2019. Predicting Economic Development using Geolocated Wikipedia Articles. arXiv:1905.01627 [cs].
- Stopczynski, A., Sekara, V., Sapiezynski, P., Cuttone, A., Madsen, M.M., Larsen, J.E., Lehmann, S., 2014. Measuring Large-Scale Social Networks with High Resolution. PLOS ONE 9, e95978. https://doi.org/10.1371/journal.pone.0095978
- Suel, E., Polak, J.W., Bennett, J.E., Ezzati, M., 2019. Measuring social, environmental and health inequalities using deep learning and street imagery. Scientific Reports 9, 6229. https://doi.org/10.1038/s41598-019-42036-w
- Tumasjan, A., Sprenger, T.O., Sandner, P.G., Welpe, I.M., 2010. Predicting elections with twitter: What 140 characters reveal about political sentiment. ICWSM 10, 178–185.
- Wang, W., Rothschild, D., Goel, S., Gelman, A., 2015. Forecasting elections with non-representative polls. International Journal of Forecasting. doi:10.1016/j.ijforecast.2014.06.001
- Weber, I., Kashyap, R., Zagheni, E., 2018. Using Advertising Audience Estimates to Improve Global Development Statistics. ITU Journal 1.
- Weidmann, N.B., Benitez-Baleato, S., Hunziker, P., Glatz, E., Dimitropoulos, X., 2016. Digital discrimination: Political bias in Internet service provision across ethnic groups. Science 353, 1151–1155. doi:10.1126/science.aaf5062
- Wilson, D.L., Adam, M.I., Abbas, O., Coyle, J., Kirk, A., Rosa, J., Gadgil, A.J., 2015. Comparing Cookstove Usage Measured with Sensors Versus Cell Phone-Based Surveys in Darfur, Sudan, in: Technologies for Development. Springer, Cham, pp. 211–221.
- Chapter 6 of: International Telecommunication Union, 2016. Measuring the Information Society Report 2016.
March 8: Catch-up day
March 15: Applications: Targeting
Required readings
- (***) Blumenstock et al, 2020. Using Mobile Phone and Satellite Data to Target Emergency Cash Transfers. https://medium.com/center-for-effective-global-action/using-mobile-phone-and-satellite-data-to-target-emergency-cash-transfers-f0651b2c1f3f
- Hanna, R., Olken, B.A., 2018. Universal Basic Incomes versus Targeted Transfers: Anti-Poverty Programs in Developing Countries. Journal of Economic Perspectives 32, 201–226. https://doi.org/10.1257/jep.32.4.201
Recommended readings
- Chi, G., Fang, H., Chatterjee, S., Blumenstock, J.E., 2021. Micro-Estimates of Wealth for all Low- and Middle-Income Countries. Working paper (on bCourses).
- Smythe, I., and Blumenstock, J.E., 2021. Geographic Micro-Targeting of Social Assistance with High-Resolution Poverty Maps. Working paper (on bCourses)
- Noriega-Campero, A., Garcia-Bulle, B., Cantu, L.F., Bakker, M.A., Tejerina, L., Pentland, A., 2020. Algorithmic targeting of social policies: fairness, accuracy, and distributed governance, in: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, FAT* ’20. Association for Computing Machinery, New York, NY, USA, pp. 241–251. https://doi.org/10.1145/3351095.3375784
Optional readings
- Abelson, B., Varshney, K.R., Sun, J., 2014. Targeting Direct Cash Transfers to the Extremely Poor, in: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’14. ACM, New York, NY, USA, pp. 1563–1572. https://doi.org/10.1145/2623330.2623335
- Aiken, E., Bedoya, G., Coville, A., Blumenstock, J.E., 2020. Targeting Development Aid with Machine Learning and Mobile Phone Data. Working Paper. http://jblumenstock.com/files/papers/jblumenstock_ultra-poor.pdf
-
Alatas, V., Banerjee, A., Hanna, R., Olken, B.A., Tobias, J., 2012. Targeting the Poor: Evidence from a Field Experiment in Indonesia. American Economic Review 102, 1206–40. https://doi.org/10.1257/aer.102.4.1206
-
Alatas, V., Banerjee, A., Chandrasekhar, A.G., Hanna, R., Olken, B.A., 2016. Network Structure and the Aggregation of Information: Theory and Evidence from Indonesia. American Economic Review 106, 1663–1704. https://doi.org/10.1257/aer.20140705
- Björkegren, D., Blumenstock, J.E., and Knight, S. 2021. (Machine) Learning what Policymakers Value. Working Paper.
-
Brown, C., Ravallion, M., van de Walle, D., 2018. A poor means test? Econometric targeting in Africa. Journal of Development Economics 134, 109–124. https://doi.org/10.1016/j.jdeveco.2018.05.004
- Coady, D., Grosh, M., Hoddinott, J., 2004a. Targeting of transfers in developing countries: Review of lessons and experience. The World Bank.
- Coady, D., Grosh, M., Hoddinott, J., 2004b. Targeting outcomes redux. The World Bank Research Observer 19, 61–85.
- Cole, S., Fernando, A.N., 2012. The value of advice: Evidence from mobile phone-based agricultural extension.
- Elbers, C., Fujii, T., Lanjouw, P., Özler, B., Yin, W., 2007. Poverty alleviation through geographic targeting: How much does disaggregation help? Journal of Development Economics 83, 198–213. https://doi.org/10.1016/j.jdeveco.2006.02.001
- Gentilini, U., Almenfi, M., Orton, I., Dale, P., 2020. Social Protection and Jobs Responses to COVID-19 (No. 33635), World Bank Other Operational Studies, World Bank Other Operational Studies. The World Bank.
- Hanna, R., Olken, B.A., 2018. Universal Basic Incomes versus Targeted Transfers: Anti-Poverty Programs in Developing Countries. Journal of Economic Perspectives 32, 201–226. https://doi.org/10.1257/jep.32.4.201
-
Lindert, K., Karippacheril, T.G., Caillava, I.R., Chávez, K.N., 2020. Sourcebook on the Foundations of Social Protection Delivery Systems. World Bank Publications.
-
Noriega-Campero, A., Garcia-Bulle, B., Cantu, L.F., Bakker, M.A., Tejerina, L., Pentland, A., 2020. Algorithmic targeting of social policies: fairness, accuracy, and distributed governance, in: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, FAT* ’20. Association for Computing Machinery, New York, NY, USA, pp. 241–251. https://doi.org/10.1145/3351095.3375784
-
Varshney, K.R., Chen, G.H., Abelson, B., Nowocin, K., Sakhrani, V., Xu, L., Spatocco, B.L., 2015. Targeting Villages for Rural Development Using Satellite Image Analysis. Big Data 3, 41–53. https://doi.org/10.1089/big.2014.0061
- Yeh, C., Perez, A., Driscoll, A., Azzari, G., Tang, Z., Lobell, D., Ermon, S., Burke, M., 2020. Using publicly available satellite imagery and deep learning to understand economic well-being in Africa. Nature Communications 11, 2583. https://doi.org/10.1038/s41467-020-16185-w
March 22: No Class (Spring Break)
March 29: Targeting, part 2
- Refer to readings assigned for March 15
April 5: Deep Dive on Ethics and Privacy
Required readings
- (***) Abebe, R., Aruleba, K., Birhane, A., Kingsley, S., Obaido, G., Remy, S.L., Sadagopan, S., 2021. Narratives and Counternarratives on Data Sharing in Africa, in: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, FAccT ’21. Association for Computing Machinery, New York, NY, USA, pp. 329–341. https://doi.org/10.1145/3442188.3445897
-
Nunn, N., 2019. Rethinking economic development. Canadian Journal of Economics/Revue canadienne d’économique 52, 1349–1373.
- Seltzer, W., 2006. The Dark Side of Numbers: Updated, in: Mackensen, R. (Ed.), Bevolkerungsforchung und Politik in Deutschland im 20. Jahrhundert. VS Verlag fur Sozialwissenschaften, Wiesbaden, pp. 119-136. https://doi.org/10.1007/978-3-531-90427-6_7
- Stiglitz, 2011. Interview with Joseph Stiglitz by Lucy Komisar
Recommended readings
- Introduction and “Computing as Formalizer” in: Rediet Abebe, Solon Barocas, Jon Kleinberg, Karen Levy, Manish Raghavan, and David G. Robinson. 2020. Roles for computing in social change. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (FAT* ’20). Association for Computing Machinery, New York, NY, USA, 252–260. DOI:https://doi.org/10.1145/3351095.3372871
-
Sambasivan, N., Arnesen, E., Hutchinson, B., Doshi, T., Prabhakaran, V., 2021. Re-imagining Algorithmic Fairness in India and Beyond, in: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, FAccT ’21. Association for Computing Machinery, New York, NY, USA, pp. 315–328. https://doi.org/10.1145/3442188.3445896
- Taylor, L., 2016. No place to hide? The ethics and analytics of tracking mobility using mobile phone data. Environ Plan D 34, 319–336.
- Mann, L., 2018. Left to Other Peoples’ Devices? A Political Economy Perspective on the Big Data Revolution in Development. Development and Change 49, 3–36
- Blumenstock, J., 2018. Don’t forget people in the use of big data for development. Nature 561, 170. https://doi.org/10.1038/d41586-018-06215-5
Optional readings
- Asian Development Bank, 2020. AI in Social Protection – Exploring Opportunities and Mitigating Risks. https://www.adb.org/publications/ai-social-protection-exploring-opportunities-mitigating-risks.
- Arstecnica (2009). “Anonymized” data really isn’t—and here’s why not.
- Blumenstock, J.E., 2018. Don’t forget people in the use of big data for development. Nature 561, 170–172.
- Birhane, Abeba, 2019. The Algorithmic Colonization of Africa.
- boyd, danah, Crawford, K., 2012. Critical Questions for Big Data. Information, Communication & Society 15, 662–679. doi:10.1080/1369118X.2012.678878
- Abstract/introduction/conclusion to: Burrell, J, 2010. Evaluating Shared Access: Social equality and the circulation of mobile phones in rural Uganda, Journal of Computer-Mediated Communication, Volume 15, Issue 2, 1 January 2010, Pages 230–250, https://doi.org/10.1111/j.1083-6101.2010.01518.x.
- Calders, T., Verwer, S., 2010. Three naive Bayes approaches for discrimination-free classification. Data Min Knowl Disc 21, 277–292. doi:10.1007/s10618-010-0190-x
- Christensen, G., Miguel, E., 2018. Transparency, Reproducibility, and the Credibility of Economics Research. Journal of Economic Literature 56, 920–980. https://doi.org/10.1257/jel.20171350
-
Cooper, F., 2010. Writing the History of Development. Journal of Modern European History 8, 5–23.
-
Crampton, J.W., Krygier, J., 2018. An introduction to critical cartography.
- de Montjoye, Y.-A., Hidalgo, C.A., Verleysen, M., Blondel, V.D., 2013. Unique in the Crowd: The privacy bounds of human mobility. Scientific Reports 3. doi:10.1038/srep01376
-
de Montjoye, Y.-A., Gambs, S., Blondel, V., Canright, G., de Cordes, N., Deletaille, S., Engø-Monsen, K., Garcia-Herranz, M., Kendall, J., Kerry, C., Krings, G., Letouzé, E., Luengo-Oroz, M., Oliver, N., Rocher, L., Rutherford, A., Smoreda, Z., Steele, J., Wetter, E., Pentland, A. “Sandy”, Bengtsson, L., 2018. On the privacy-conscientious use of mobile phone data. Scientific Data 5, 180286. https://doi.org/10.1038/sdata.2018.286
- Dietvorst, B.J., Simmons, J.P., Massey, C., 2015. Algorithm aversion: People erroneously avoid algorithms after seeing them err. Journal of Experimental Psychology: General 144, 114–126. doi:10.1037/xge0000033
- Graham, M., Shelton, T., 2013. Geography and the future of big data, big data and the future of geography. Dialogues in Human Geography 3, 255–261. https://doi.org/10.1177/2043820613513121
- Harley, J. B. Maps, knowledge, and power. Chapter 8 of Geographic thought: a praxis perspective 129–148 (2009).
- Kamishima, T., Akaho, S., Asoh, H., Sakuma, J., 2012. Fairness-Aware Classifier with Prejudice Remover Regularizer, in: Machine Learning and Knowledge Discovery in Databases. Presented at the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Springer, Berlin, Heidelberg, pp. 35–50. doi:10.1007/978-3-642-33486-3_3
- Kerry, C.F., Kendall, J., de Montjoye, Y.-A., 2014. Enabling Humanitarian Use of Mobile Phone Data. Brookings Issues in Technology Innovation.
- Kleinberg, J., Ludwig, J., Mullainathan, S., Obermeyer, Z., 2015. Prediction Policy Problems. American Economic Review 105, 491–495. doi:10.1257/aer.p20151023
- Kleinberg, J., Lakkaraju, H., Leskovec, J., Ludwig, J., Mullainathan, S., 2017. Human Decisions and Machine Predictions. Quarterly Journal of Economics. https://doi.org/10.1093/qje/qjx032
-
Kleinberg, J., Ludwig, J., Mullainathan, S., Sunstein, C.R., 2019. Discrimination In The Age Of Algorithms (Working Paper No. 25548). National Bureau of Economic Research. https://doi.org/10.3386/w25548
-
Kohler-Hausmann, I., 2019. Eddie Murphy and the Dangers of Counterfactual Causal Thinking About Detecting Racial Discrimination (SSRN Scholarly Paper No. ID 3050650). Social Science Research Network, Rochester, NY.
-
Korinek, A., Stiglitz, J.E., 2021. Artificial Intelligence, Globalization, and Strategies for Economic Development (No. w28453). National Bureau of Economic Research. https://doi.org/10.3386/w28453
- Kramer, A.D.I., Guillory, J.E., Hancock, J.T., 2014. Experimental evidence of massive-scale emotional contagion through social networks. PNAS 111, 8788–8790. doi:10.1073/pnas.1320040111. Also skim the fallout:
- Adam Kramer’s explanation.
- Rosen, J. 2014. Facebook’s controversial study is business as usual for tech companies but corrosive for universities. Washington Post.
- Zeynep Tufekci. Facebook and Engineering the Public.
- Watts, D. 2014. Stop complaining about the Facebook study. It’s a golden age for research. Guardian.
- Crawford, K. 2014. The Test We Can—and Should—Run on Facebook. The Atlantic.
- boyd, d. 2014. What does the Facebook experiment teach us? Medium
- Landau, S., 2016. Transactional information is remarkably revelatory. PNAS 113, 5467–5469. doi:10.1073/pnas.1605356113
- Landefeld (2014), “Uses of Big Data for Official Statistics: Privacy, Incentives, Statistical Challenges, and Other Issues” UNstats discussion paper.
- Lepri, B., Staiano, J., Sangokoya, D., Letouzé, E., Oliver, N., 2016. The Tyranny of Data? The Bright and Dark Sides of Data-Driven Decision-Making for Social Good. arXiv:1612.00323 [physics].
-
Liu, L.T., Dean, S., Rolf, E., Simchowitz, M., Hardt, M., 2018. Delayed Impact of Fair Machine Learning. ICML.
- Mayer, J., Mutchler, P., Mitchell, J.C., 2016. Evaluating the privacy properties of telephone metadata. PNAS 113, 5536–5541. doi:10.1073/pnas.1508081113
- Montjoye, Y.-A. de, Radaelli, L., Singh, V.K., Pentland, A. “Sandy,” 2015. Unique in the shopping mall: On the reidentifiability of credit card metadata. Science 347, 536–539. doi:10.1126/science.1256297
- Narayanan, A., Shmatikov, V., 2008. Robust De-anonymization of Large Sparse Datasets, in: 2008 IEEE Symposium on Security and Privacy (Sp 2008). Presented at the 2008 IEEE Symposium on Security and Privacy (sp 2008), pp. 111–125. doi:10.1109/SP.2008.33
- Narayanan, A., Shmatikov, V., 2009. De-anonymizing Social Networks, in: 2009 30th IEEE Symposium on Security and Privacy. Presented at the 2009 30th IEEE Symposium on Security and Privacy, pp. 173–187. doi:10.1109/SP.2009.22 Skim the Follow-up paper
- Peng, R.D., 2011. Reproducible Research in Computational Science. Science 334, 1226–1227. https://doi.org/10.1126/science.1213847
- Pierson, E., Simoiu, C., Overgoor, J., Corbett-Davies, S., Ramachandran, V., Phillips, C., Goel, S., 2017. A large-scale analysis of racial disparities in police stops across the United States. arXiv:1706.05678 [stat].
- Pope, D.G., Sydnor, J.R., 2008. What’s in a Picture? Evidence of Discrimination from Prosper.com (SSRN Scholarly Paper No. ID 1220902). Social Science Research Network, Rochester, NY.
-
Sandvik, K.B., Jacobsen, K.L., McDonald, S.M., 2017. Do no harm: A taxonomy of the challenges of humanitarian experimentation. International Review of the Red Cross 99, 319–344. https://doi.org/10.1017/S181638311700042X
- Sweeney, L., 2002. K-anonymity: A Model for Protecting Privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10, 557–570. doi:10.1142/S0218488502001648
-
Taylor, L., 2020. The price of certainty: How the politics of pandemic data demand an ethics of care. Big Data & Society 7, 2053951720942539. https://doi.org/10.1177/2053951720942539
-
Vines, J., Clarke, R., Wright, P., McCarthy, J., Olivier, P., 2013. Configuring participation: on how we involve people in design, in: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’13. Association for Computing Machinery, New York, NY, USA, pp. 429–438. https://doi.org/10.1145/2470654.2470716
- Wesolowski, A., Buckee, C.O., Bengtsson, L., Wetter, E., Lu, X., Tatem, A.J., 2014. Commentary: Containing the Ebola Outbreak – the Potential and Challenge of Mobile Network Data. PLoS Currents. doi:10.1371/currents.outbreaks.0177e7fcf52217b8b634376e2f3efc5e
- Zimmer, Michael. 2010. “‘But the Data Is Already Public’: on the ethics of research in Facebook.” Ethics and Information Technology 12(4):313-25.
April 12: Mobility, Disasters, Displacement, Crime, and Civil Unrest
Required readings
- (***) Bagrow, J.P., Wang, D., Barabási, A.-L., 2011. Collective Response of Human Populations to Large-Scale Emergencies. PLoS ONE 6, e17680. doi:10.1371/journal.pone.0017680
- Lu, Xin, Linus Bengtsson, and Petter Holme. Predictability of Population Displacement after the 2010 Haiti Earthquake. Proceedings of the National Academy of Sciences 109, no. 29 (July 17, 2012): 11576–81.
Recommended readings
- Tai, Mehra, Blumenstock, 2021. Estimating the Effect of Violence on Internal Displacement using Mobile Phone Data (on bCourses).
- Kryvasheyeu, Y., Chen, H., Obradovich, N., Moro, E., Hentenryck, P.V., Fowler, J., Cebrian, M., 2016. Rapid assessment of disaster damage using social media activity. Science Advances 2, e1500779. doi:10.1126/sciadv.1500779
Optional readings
- Albuquerque, J.P. de, Herfort, B., Brenning, A., Zipf, A., 2015. A geographic approach for combining social media and authoritative data towards identifying useful information for disaster management. International Journal of Geographical Information Science 29, 667–689. doi:10.1080/13658816.2014.996567
-
Altshuler, Y., Fire, M., Shmueli, E., Elovici, Y., Bruckstein, A., Pentland, A. (Sandy), Lazer, D., 2013. Detecting Anomalous Behaviors Using Structural Properties of Social Networks, in: Greenberg, A.M., Kennedy, W.G., Bos, N.D. (Eds.), Social Computing, Behavioral-Cultural Modeling and Prediction, Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 433–440.
-
Atefeh, F., Khreich, W., 2015. A Survey of Techniques for Event Detection in Twitter. Computational Intelligence 31, 132–164. https://doi.org/10.1111/coin.12017
- Bengtsson, L., Lu, X., Thorson, A., Garfield, R., von Schreeb, J., 2011. Improved Response to Disasters and Outbreaks by Tracking Population Movements with Mobile Phone Network Data: A Post-Earthquake Geospatial Study in Haiti. PLoS Med 8, e1001083. doi:10.1371/journal.pmed.1001083
- Dobra, A., Williams, N.E., Eagle, N., 2015. Spatiotemporal detection of unusual human population behavior using mobile phone data. PloS one 10, e0120449.
- Dong, X., Meyer, J., Shmueli, E., Bozkaya, B., Pentland, A., 2018. Methods for quantifying effects of social unrest using credit card transaction data. EPJ Data Sci. 7, 8. https://doi.org/10.1140/epjds/s13688-018-0136-x
- Gao, Liang, Chaoming Song, Ziyou Gao, Albert-László Barabási, James P. Bagrow, and Dashun Wang. “Quantifying Information Flow during Emergencies.” Scientific Reports 4 (2014).
- Gething and Tatem (2011). “Can Mobile Phone Data Improve Emergency Response to Natural Disasters?” PLoS Medicine.
- Gundogdu, D., Incel, O.D., Salah, A.A., Lepri, B., 2016. Countrywide arrhythmia: emergency event detection using mobile phone data. EPJ Data Sci. 5, 25. doi:10.1140/epjds/s13688-016-0086-0
- Hong, L., Lee, M., Mashhadi, A., Frias-Martinez, V., 2018. Towards Understanding Communication Behavior Changes During Floods Using Cell Phone Data, in: Staab, S., Koltsova, O., Ignatov, D.I. (Eds.), Social Informatics, Lecture Notes in Computer Science. Springer International Publishing, pp. 97–107.
- Kapoor, A., Eagle, N., Horvitz, E., (2010) People, Quakes, and Communications: Inferences from Call Dynamics about a Seismic Event and its Influences on a Population.
- Li, T., Dejby, J., Albert, M., Bengtsson, L., Lefebvre, V., 2019. Detecting individual internal displacements following a sudden-onset disaster using time series analysis of call detail records. arXiv:1908.02377 [physics]. https://doi.org/10.5281/zenodo.3349848
- Meier, P., 2015. Digital humanitarians: how big data is changing the face of humanitarian response. Routledge.
- Mora, Fernando (2011): Innovating in the Midst of Crisis. A Case Study of Ushahidi.
- Mueller, H., Groger, A., Hersh, J., Matranga, A., Serrat, J., 2020. Monitoring War Destruction from Space: A Machine Learning Approach. arXiv:2010.05970
- Palen, L., Anderson, K.M., 2016. Crisis informatics—New data for extraordinary times. Science 353, 224–225. https://doi.org/10.1126/science.aag2579
-
Robinson, B., Power, R., Cameron, M., 2013. A sensitive Twitter earthquake detector, in: Proceedings of the 22nd International Conference on World Wide Web, WWW ’13 Companion. Association for Computing Machinery, New York, NY, USA, pp. 999–1002. https://doi.org/10.1145/2487788.2488101
- Sakaki, T., Okazaki, M., Matsuo, Y., 2010. Earthquake Shakes Twitter Users: Real-time Event Detection by Social Sensors, in: Proceedings of the 19th International Conference on World Wide Web, WWW ’10. ACM, New York, NY, USA, pp. 851–860. doi:10.1145/1772690.1772777
- Sutton, J., Spiro, E.S., Johnson, B., Fitzhugh, S., Gibson, B., Butts, C.T., 2014. Warning tweets: serial transmission of messages during the warning phase of a disaster event. Information, Communication & Society 17, 765–787. doi:10.1080/1369118X.2013.862561
- Vieweg, S., Hughes, A.L., Starbird, K., Palen, L., 2010. Microblogging During Two Natural Hazards Events: What Twitter May Contribute to Situational Awareness, in: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’10. ACM, New York, NY, USA, pp. 1079–1088. https://doi.org/10.1145/1753326.1753486
- Wang, W., Kennedy, R., Lazer, D., Ramakrishnan, N., 2016. Growing pains for global monitoring of societal events. Science 353, 1502–1503. doi:10.1126/science.aaf6758
-
Wilson, R., Zu Erbach-Schoenberg, E., Albert, M., Power, D., Tudge, S., Gonzalez, M., Guthrie, S., Chamberlain, H., Brooks, C., Hughes, C., Pitonakova, L., Buckee, C., Lu, X., Wetter, E., Tatem, A., Bengtsson, L., 2016. Rapid and Near Real-Time Assessments of Population Displacement Using Mobile Phone Data Following Disasters: The 2015 Nepal Earthquake. PLoS Curr 8. https://doi.org/10.1371/currents.dis.d073fbece328e4c39087bc086d694b5c
- Young, W., Blumenstock, J.E., Fox, E., McCormick, T., 2014. Detecting and classifying anomalous behavior in spatiotemporal network data, in: The 20th ACM Conference on Knowledge Discovery and Mining (KDD ’14), Workshop on Data Science for Social Good. Presented at the Data Science for Social Good workshop at KDD, New York, NY.
April 19: Applications: Financial Inclusion
Required readings
- (***) Bjorkegren, D., Grissen, D., 2015. Behavior Revealed in Mobile Phone Usage Predicts Loan Repayment. Available at SSRN 2611775.
Recommended readings
- Francis, E., Blumenstock, J.E., Robinson, J., 2017. Digital Credit: A Snapshot of the Current Landscape and Open Research Questions. BREAD Working Paper No. 516.
- Read a couple of these posts (or anything linked from this CGAP blog series):
Optional readings
-
Bachas, P., Gertler, P., Higgins, S., Seira, E., 2018. Digital financial services go a long way: Transaction costs and financial inclusion, in: AEA Papers and Proceedings. pp. 444–48.
- Bachas, P., Gertler, P., Higgins, S., Seira, E., 2017. How debit cards enable the poor to save more. National Bureau of Economic Research.
- Banerjee, A., Duflo, E., Glennerster, R., Kinnan, C., 2015. The miracle of microfinance? Evidence from a randomized evaluation. American Economic Journal: Applied Economics 7, 22–53.
- Banerjee, A., Karlan, D., Zinman, J., 2015. Six Randomized Evaluations of Microcredit: Introduction and Further Steps. American Economic Journal: Applied Economics 7, 1–21. doi:10.1257/app.20140287
- Banerjee, Abhijit, Arun G. Chandrasekhar, Esther Duflo, and Matthew O. Jackson. The Diffusion of Microfinance. Science 341, no. 6144 (July 26, 2013): 1236498. doi:10.1126/science.1236498. Also read supplementary materials
- Bharadwaj, P., Jack, W., Suri, T., 2019. Fintech and Household Resilience to Shocks: Evidence from Digital Loans in Kenya. National Bureau of Economic Research Working Paper Series.
- Blumenstock, J.E., Eagle, N., Fafchamps, M., 2016. Airtime Transfers and Mobile Communications: Evidence in the Aftermath of Natural Disasters. Journal of Development Economics 120, 157–181.
- Clemente, R.D., Luengo-Oroz, M., Travizano, M., Xu, S., Vaitla, B., González, M.C., 2018. Sequences of purchases in credit card data reveal lifestyles in urban populations. Nature Communications 9, 3330. https://doi.org/10.1038/s41467-018-05690-8
- GSMA 2020. State of the Industry Report on Mobile Money
- Gubbins, P. & Totolo, E. (2018) Digital credit in Kenya: Evidence from demand-side surveys. Nairobi, Kenya: FSD Kenya.
- Khan, M.R., Blumenstock, J.E., 2016. Predictors without Borders: Behavioral Modeling of Product Adoption in Three Developing Countries. Proceedings of the 22nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD `16).
- Khwaja, A.I., Mian, A., 2005. Do Lenders Favor Politically Connected Firms? Rent Provision in an Emerging Financial Market. Q J Econ 120, 1371–1411.
- Martinez, E.A., Rubio, M.H., Martinez, R.M., Arias, J.M., Patane, D., Zerbe, A., Kirkpatrick, R., Luengo-Oroz, M., Zerbe, A., 2016. Measuring Economic Resilience to Natural Disasters with Big Economic Transaction Data. arXiv:1609.09340 [cs].
- Meager, R., 2019. Understanding the Average Impact of Microcredit Expansions: A Bayesian Hierarchical Analysis of Seven Randomized Experiments. American Economic Journal: Applied Economics 11, 57–91.
- Nordin, K., Hunter, R., Adaii, A., 2017. Branch case study: Exploring the potential of alternative data for creating new markets. Insight2Impact Case Study.
- Paruthi, G., Frias-Martinez, E., Frias-Martinez, V., 2016. Peer-to-peer microlending platforms: Characterization of online traits, in: 2016 IEEE International Conference on Big Data (Big Data). Presented at the 2016 IEEE International Conference on Big Data (Big Data), pp. 2180–2189. doi:10.1109/BigData.2016.7840848
-
Pedro, J.S., Proserpio, D., Oliver, N., 2015. MobiScore: Towards Universal Credit Scoring from Mobile Phone Data, in: Ricci, F., Bontcheva, K., Conlan, O., Lawless, S. (Eds.), User Modeling, Adaptation and Personalization, Lecture Notes in Computer Science. Springer International Publishing, pp. 195–207.
-
Rizzi, A., Kessler, A., Menajovsky, J., 2021. The Stories Algorithms Tell: Bias and Financial Inclusion at the Data Margins.
-
Shema, A., 2019. Effective Credit Scoring Using Limited Mobile Phone Data, in: Proceedings of the Tenth International Conference on Information and Communication Technologies and Development, ICTD ’19. ACM, New York, NY, USA, pp. 7:1–7:11. https://doi.org/10.1145/3287098.3287116
April 26: Final presentations
Optional: Public Health and Epidemiology
Required readings
- Milusheva, S., 2020. Using Mobile Phone Data to Reduce Spread of Disease Working Paper
- Buckee, C.O., Balsari, S., Chan, J., Crosas, M., Dominici, F., Gasser, U., Grad, Y.H., Grenfell, B., Halloran, M.E., Kraemer, M.U., 2020. Aggregated mobility data could help fight COVID-19. Science (New York, NY) 368, 145–146.
Recommended readings
- Oliver, N., Lepri, B., Sterly, H., Lambiotte, R., Delataille, S., Nadai, M.D., Letouzé, E., Salah, A.A., Benjamins, R., Cattuto, C., Colizza, V., Cordes, N. de, Fraiberger, S.P., Koebe, T., Lehmann, S., Murillo, J., Pentland, A., Pham, P.N., Pivetta, F., Saramäki, J., Scarpino, S.V., Tizzoni, M., Verhulst, S., Vinck, P., 2020. Mobile phone data for informing public health actions across the COVID-19 pandemic life cycle. Science Advances
- Wesolowski, A., Metcalf, C.J.E., Eagle, N., Kombich, J., Grenfell, B.T., Bjørnstad, O.N., Lessler, J., Tatem, A.J., Buckee, C.O., 2015. Quantifying seasonal population fluxes driving rubella transmission dynamics using mobile phone data. PNAS 112, 11114–11119. doi:10.1073/pnas.1423542112
Recent work on Covid-19
- Jeffrey, B., Walters, C.E., Ainslie, K.E., Eales, O., Ciavarella, C., Bhatia, S., Hayes, S., Baguelin, M., Boonyasiri, A., Brazeau, N.F., 2020. Anonymised and aggregated crowd level mobility data from mobile phones suggests that initial compliance with COVID-19 social distancing interventions was high and geographically consistent across the UK. Wellcome Open Research 5.
- Kraemer, M.U., Yang, C.-H., Gutierrez, B., Wu, C.-H., Klein, B., Pigott, D.M., Du Plessis, L., Faria, N.R., Li, R., Hanage, W.P., 2020. The effect of human mobility and control measures on the COVID-19 epidemic in China. Science 368, 493–497.
- Nouvellet, P., Bhatia, S., Cori, A., Ainslie, K.E., Baguelin, M., Bhatt, S., Boonyasiri, A., Brazeau, N.F., Cattarino, L., Cooper, L.V., 2021. Reduction in mobility and COVID-19 transmission. Nature communications 12, 1–9.
- Warren, M.S., Skillman, S.W., 2020. Mobility changes in response to COVID-19. arXiv preprint arXiv:2003.14228.
- Wellenius, G.A., Vispute, S., Espinosa, V., Fabrikant, A., Tsai, T.C., Hennessy, J., Williams, B., Gadepalli, K., Boulange, A., Pearce, A., 2020. Impacts of state-level policies on social distancing in the United States using aggregated mobility data during the COVID-19 pandemic. arXiv preprint arXiv:2004.10172.
Optional readings
-
Abebe, R., Hill, S., Vaughan, J.W., Small, P.M., Schwartz, H.A., 2018. Using Search Queries to Understand Health Information Needs in Africa. arXiv:1806.05740
- Annan, K., 2018. Data can help to end malnutrition across Africa. Nature 555, 7. https://doi.org/10.1038/d41586-018-02386-3
- Balcan, D., Colizza, V., Gonçalves, B., Hu, H., Ramasco, J.J., Vespignani, A., 2009. Multiscale mobility networks and the spatial spreading of infectious diseases. PNAS 106, 21484–21489. doi:10.1073/pnas.0906910106
- Bansak, K., Ferwerda, J., Hainmueller, J., Dillon, A., Hangartner, D., Lawrence, D., Weinstein, J., 2018. Improving refugee integration through data-driven algorithmic assignment. Science 359, 325–329. https://doi.org/10.1126/science.aao4408
-
Barchiesi, D., Preis, T., Bishop, S., Moat, H.S., 2015. Modelling human mobility patterns using photographic data shared online. Royal Society Open Science 2, 150046. https://doi.org/10.1098/rsos.150046
- Beiró, M.G., Panisson, A., Tizzoni, M., Cattuto, C., 2016. Predicting human mobility through the assimilation of social media traces into mobility models. EPJ Data Science 5, 30. doi:10.1140/epjds/s13688-016-0092-2
- Bharti, N., Tatem, A.J., Ferrari, M.J., Grais, R.F., Djibo, A., Grenfell, B.T., 2011. Explaining Seasonal Fluctuations of Measles in Niger Using Nighttime Lights Imagery. Science 334, 1424–1427. doi:10.1126/science.1210554
- Blumenstock, J.E., 2012. Inferring Patterns of Internal Migration from Mobile Phone Call Records: Evidence from Rwanda. Information Technology for Development 18, 107–125.
- Blumenstock, J.E., Chokkalingam, R., Gaikwad, V., Kondepudi, S., 2014. Probabilistic Inference of Unknown Locations: Exploiting Collective Behavior when Individual Data is Scarce, in: Proceedings of the Fifth ACM Symposium on Computing for Development, ACM DEV-5 ’14. ACM, New York, NY, USA, pp. 103–112. doi:10.1145/2674377.2674387
- Blumenstock, J., Maldeniya, D., Lokanathan, S., 2017. Understanding the Impact of Urban Infrastructure: New Insights from Population-Scale Data, in: Proceedings of the Ninth International Conference on Information and Communication Technologies and Development, ICTD ’17. ACM, New York, NY, USA, p. 4:1–4:12. https://doi.org/10.1145/3136560.3136575
- Blumenstock, J., Chi, G., and Tan, X., 2019. Migration and the Value of Social Networks. Working paper.
- Burke, M., Heft-Neal, S., Bendavid, E., 2016. Sources of variation in under-5 mortality across sub-Saharan Africa: a spatial analysis. The Lancet Global Health 4, e936–e945. doi:10.1016/S2214-109X(16)30212-1
-
Chi, Guanghua, Lin, F., Chi, Guangqing, Blumenstock, J., 2020. A general approach to detecting migration events in digital trace data. PLOS ONE 15, e0239408. https://doi.org/10.1371/journal.pone.0239408
- Dijstelbloem, H., 2017. Migration tracking is a mess. Nature News 543, 32. doi:10.1038/543032a
- Finger, F., Genolet, T., Mari, L., Magny, G.C. de, Manga, N.M., Rinaldo, A., Bertuzzo, E., 2016. Mobile phone data highlights the role of mass gatherings in the spreading of cholera outbreaks. PNAS 113, 6421–6426. doi:10.1073/pnas.1522305113
-
Fiorio, L., Abel, G., Cai, J., Zagheni, E., Weber, I., Vinué, G., 2017. Using Twitter Data to Estimate the Relationship between Short-term Mobility and Long-term Migration, in: Proceedings of the 2017 ACM on Web Science Conference, WebSci ’17. Association for Computing Machinery, New York, NY, USA, pp. 103–110. https://doi.org/10.1145/3091478.3091496
- Ford, T.E., Colwell, R.R., Rose, J.B., Morse, S.S., Rogers, D.J., Yates, T.L., 2009. Using Satellite Images of Environmental Changes to Predict Infectious Disease Outbreaks. Emerg Infect Dis 15, 1341–1346. doi:10.3201/eid/1509.081334
- Generous, N., Fairchild, G., Deshpande, A., Del Valle, S.Y., Priedhorsky, R., 2014. Global Disease Monitoring and Forecasting with Wikipedia. PLoS Comput Biol 10, e1003892. doi:10.1371/journal.pcbi.1003892
- Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.-L., 2008. Understanding individual human mobility patterns. Nature 453, 779-782. Also read supplementary material.
- Grantz, K.H., Meredith, H.R., Cummings, D.A.T., Metcalf, C.J.E., Grenfell, B.T., Giles, J.R., Mehta, S., Solomon, S., Labrique, A., Kishore, N., Buckee, C.O., Wesolowski, A., 2020. The use of mobile phone data to inform analysis of COVID-19 pandemic epidemiology. Nature Communications 11, 4961. https://doi.org/10.1038/s41467-020-18190-5
- Hanna, R., Kreindler, G., Olken, B.A., 2017. Citywide effects of high-occupancy vehicle restrictions: Evidence from “three-in-one” in Jakarta. Science 357, 89–93. https://doi.org/10.1126/science.aan2747
- Hofleitner, A. 2013. Coordinated Migration.
- Hong, L., Wu, J., Frias-Martinez, E., Villarreal, A., Frias-Martinez, V., 2019. Characterization of Internal Migrant Behavior in the Immediate Post-migration Period Using Cell Phone Traces, in: Proceedings of the Tenth International Conference on Information and Communication Technologies and Development, ICTD ’19. ACM, New York, NY, USA, pp. 4:1–4:12. https://doi.org/10.1145/3287098.3287119
- Isaacman, S., Frias-Martinez, V., Frias-Martinez, E., 2018. Modeling Human Migration Patterns During Drought Conditions in La Guajira, Colombia, in: Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable Societies, COMPASS ’18. ACM, New York, NY, USA, pp. 31:1–31:9. https://doi.org/10.1145/3209811.3209861
- Kriendler, G., Miyauchi, Y., 2019. Measuring Commuting and Economic Activity Inside Cities with Cell Phone Records. Working Paper.
- Lenormand, M., Picornell, M., Cantú-Ros, O.G., Tugores, A., Louail, T., Herranz, R., Barthelemy, M., Frías-Martínez, E., Ramasco, J.J., 2014. Cross-Checking Different Sources of Mobility Information. PLOS ONE 9, e105184. doi:10.1371/journal.pone.0105184
- Lu, X., Wrathall, D.J., Sundsøy, P.R., Nadiruzzaman, M., Wetter, E., Iqbal, A., Qureshi, T., Tatem, A., Canright, G., Engø-Monsen, K., Bengtsson, L., 2016. Unveiling hidden migration and mobility patterns in climate stressed regions: A longitudinal study of six million anonymous mobile phone users in Bangladesh. Global Environmental Change 38, 1–7. doi:10.1016/j.gloenvcha.2016.02.002
- Maxmen, A., 2019. Can tracking people through phone-call data improve lives? Nature 569, 614. https://doi.org/10.1038/d41586-019-01679-5
- Novembre, J., Johnson, T., Bryc, K., Kutalik, Z., Boyko, A.R., Auton, A., Indap, A., King, K.S., Bergmann, S., Nelson, M.R., Stephens, M., Bustamante, C.D., 2008. Genes mirror geography within Europe. Nature 456, 98–101. https://doi.org/10.1038/nature07331
- Osgood-Zimmerman et al. 2018. Mapping child growth failure in Africa between 2000 and 2015. Nature 555, 41–47. https://doi.org/10.1038/nature25760
- Palchykov, V., Mitrović, M., Jo, H.-H., Saramäki, J., Pan, R.K., 2014. Inferring human mobility using communication patterns. Scientific Reports 4, 6174. doi:10.1038/srep06174
-
Palotti, J., Adler, N., Morales-Guzman, A., Villaveces, J., Sekara, V., Herranz, M.G., Al-Asad, M., Weber, I., 2020. Monitoring of the Venezuelan exodus through Facebook’s advertising platform. PLOS ONE 15, e0229175. https://doi.org/10.1371/journal.pone.0229175
- Pervaiz, Fahad, Mansoor Pervaiz, Nabeel Abdur Rehman, and Umar Saif. FluBreaks: Early Epidemic Detection from Google Flu Trends. Journal of Medical Internet Research 14, no. 5 (October 4, 2012): e125. doi:10.2196/jmir.2102.
- Peak, C.M., Wesolowski, A., zu Erbach-Schoenberg, E., Tatem, A.J., Wetter, E., Lu, X., Power, D., Weidman-Grunewald, E., Ramos, S., Moritz, S., Buckee, C.O., Bengtsson, L., n.d. Population mobility reductions associated with travel restrictions during the Ebola epidemic in Sierra Leone: use of mobile phone data. Int J Epidemiol. https://doi.org/10.1093/ije/dyy095
- Phithakkitnukoon, S., Sukhvibul, T., Demissie, M., Smoreda, Z., Natwichai, J., Bento, C., 2017. Inferring social influence in transport mode choice using mobile phone data. EPJ Data Sci. 6, 11. https://doi.org/10.1140/epjds/s13688-017-0108-6
- Ranjan, G., Zang, H., Zhang, Z.-L., Bolot, J., 2012. Are Call Detail Records Biased for Sampling Human Mobility? SIGMOBILE Mob. Comput. Commun. Rev. 16, 33–44. https://doi.org/10.1145/2412096.2412101
- Roick, O., Heuser, S., 2013. Location Based Social Networks – Definition, Current State of the Art and Research Agenda. Transactions in GIS 17, 763–784. doi:10.1111/tgis.12032
- Salathé, Marcel, Maria Kazandjieva, Jung Woo Lee, Philip Levis, Marcus W. Feldman, and James H. Jones. A High-Resolution Human Contact Network for Infectious Disease Transmission. Proceedings of the National Academy of Sciences 107, no. 51 (December 21, 2010): 22020–25. doi:10.1073/pnas.1009094108.
-
Signorini, A., Segre, A.M., Polgreen, P.M., 2011. The Use of Twitter to Track Levels of Disease Activity and Public Concern in the U.S. during the Influenza A H1N1 Pandemic. PLOS ONE 6, e19467. https://doi.org/10.1371/journal.pone.0019467
-
Simini, F., González, M.C., Maritan, A., Barabási, A.-L., 2012. A universal model for mobility and migration patterns. Nature 484, 96–100. https://doi.org/10.1038/nature10856
- Song, C., Qu, Z., Blumm, N., Barabasi, A.-L., 2010. Limits of Predictability in Human Mobility. Science 327, 1018–1021.
-
S. Spyratos, M. Vespe, F. Natale, I. Weber, E. Zagheni, M. Rango, Quantifying international human mobility patterns using Facebook Network data. PLOS ONE. 14, e0224134 (2019).
- State, B., Rodriguez, M., Helbing, D., Zagheni, E., 2014. Migration of Professionals to the U.S., in: Aiello, L.M., McFarland, D. (Eds.), Social Informatics, Lecture Notes in Computer Science. Springer International Publishing, pp. 531–543.
- Tatem, A.J., Huang, Z., Narib, C., Kumar, U., Kandula, D., Pindolia, D.K., Smith, D.L., Cohen, J.M., Graupe, B., Uusiku, P., Lourenço, C., 2014. Integrating rapid risk mapping and mobile phone call record data for strategic malaria elimination planning. Malaria Journal 13, 52. doi:10.1186/1475-2875-13-52
- Wesolowski, A., Eagle, N., Tatem, A.J., Smith, D.L., Noor, A.M., Snow, R.W., Buckee, C.O., 2012. Quantifying the Impact of Human Mobility on Malaria. Science 338, 267–270. doi:10.1126/science.1223467
- Wesolowski, A., Eagle, N., Noor, A.M., Snow, R.W., Buckee, C.O., 2013. The impact of biases in mobile phone ownership on estimates of human mobility. Journal of The Royal Society Interface 10, 20120986. doi:10.1098/rsif.2012.0986
-
Wesolowski, A., Buckee, C.O., Pindolia, D.K., Eagle, N., Smith, D.L., Garcia, A.J., Tatem, A.J., 2013. The Use of Census Migration Data to Approximate Human Movement Patterns across Temporal Scales. PLOS ONE 8, e52971.
- Wesolowski, A., Stresman, G., Eagle, N., Stevenson, J., Owaga, C., Marube, E., Bousema, T., Drakeley, C., Cox, J., Buckee, C.O., 2014. Quantifying travel behavior for infectious disease research: a comparison of data from surveys and mobile phones. Scientific Reports 4, 5678. doi:10.1038/srep05678
- Wesolowski, A., Buckee, C.O., Bengtsson, L., Wetter, E., Lu, X., Tatem, A.J., 2014. Commentary: Containing the Ebola Outbreak – the Potential and Challenge of Mobile Network Data. PLoS Currents. doi:10.1371/currents.outbreaks.0177e7fcf52217b8b634376e2f3efc5e
- Wesolowski, A., Qureshi, T., Boni, M.F., Sundsøy, P.R., Johansson, M.A., Rasheed, S.B., Engø-Monsen, K., Buckee, C.O., 2015. Impact of human mobility on the emergence of dengue epidemics in Pakistan. PNAS 112, 11887–11892. doi:10.1073/pnas.1504964112
- Wesolowski, A., Buckee, C.O., Engø-Monsen, K., Metcalf, C.J.E., 2016. Connecting Mobility to Infectious Diseases: The Promise and Limits of Mobile Phone Data. J Infect Dis. 214, S414–S420. doi:10.1093/infdis/jiw273
- Wesolowski, A., Erbach-Schoenberg, E. zu, Tatem, A.J., Lourenço, C., Viboud, C., Charu, V., Eagle, N., Engø-Monsen, K., Qureshi, T., Buckee, C.O., Metcalf, C.J.E., 2017. Multinational patterns of seasonal asymmetry in human movement influence infectious disease dynamics. Nature Communications 8, 2069. https://doi.org/10.1038/s41467-017-02064-4
- Zagheni, E., Garimella, V.R.K., Weber, I., State, B., 2014. Inferring International and Internal Migration Patterns from Twitter Data, in: Proceedings of the Companion Publication of WWW’14. Switzerland, pp. 439–444. doi:10.1145/2567948.2576930
- Zagheni, E., Weber, I., 2012. You Are Where You e-Mail: Using e-Mail Data to Estimate International Migration Rates, in: Proceedings of the 4th Annual ACM Web Science Conference, WebSci ’12. ACM, New York, NY, USA, pp. 348–351. doi:10.1145/2380718.2380764
- Zhang, Q., Perra, N., Perrotta, D., Tizzoni, M., Paolotti, D., Vespignani, A., 2017. Forecasting seasonal influenza fusing digital indicators and a mechanistic disease model, in: Proceedings of the 26th International Conference on World Wide Web. International World Wide Web Conferences Steering Committee, pp. 311–319.
- Zhao, Z., Shaw, S.-L., Xu, Y., Lu, F., Chen, J., Yin, L., 2016. Understanding the bias of call detail records in human mobility research. International Journal of Geographical Information Science 30, 1738–1762. doi:10.1080/13658816.2015.1137298
Optional: Crime and Civil Unrest
- Goel, S., Rao, J.M., Shroff, R., 2016. Precinct or prejudice? Understanding racial disparities in New York City’s stop-and-frisk policy. Ann. Appl. Stat. 10, 365–394. doi:10.1214/15-AOAS897
- Berk, R., 2012. Criminal Justice Forecasts of Risk: A Machine Learning Approach, 2012 edition. ed. Springer, London.
- Bogomolov, A., Lepri, B., Staiano, J., Letouzé, E., Oliver, N., Pianesi, F., Pentland, A., 2015. Moves on the Street: Classifying Crime Hotspots Using Aggregated Anonymized Data on People Dynamics. Big Data 3, 148–158. doi:10.1089/big.2014.0054
- Dong, X., Meyer, J., Shmueli, E., Bozkaya, B., Pentland, A., 2018. Methods for quantifying effects of social unrest using credit card transaction data. EPJ Data Sci. 7, 8. https://doi.org/10.1140/epjds/s13688-018-0136-x
- Goel, S., Rao, J.M., Shroff, R., 2016. Personalized Risk Assessments in the Criminal Justice System. The American Economic Review 106, 119–123. doi:10.1257/aer.p20161028
- Kleinberg, J., Ludwig, J., Mullainathan, S., Obermeyer, Z., 2015. Prediction Policy Problems. American Economic Review 105, 491–495. doi:10.1257/aer.p20151023
- Mueller, H., Groger, A., Hersh, J., Matranga, A., Serrat, J., 2020. Monitoring War Destruction from Space: A Machine Learning Approach. arXiv:2010.05970
-
Shapiro, A., 2017. Reform predictive policing. Nature News 541, 458. https://doi.org/10.1038/541458a
- Wang, T., Rudin, C., Wagner, D., Sevieri, R., 2013. Learning to detect patterns of crime, in: Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer Berlin Heidelberg, pp. 515–530.
- Wang, W., Kennedy, R., Lazer, D., Ramakrishnan, N., 2016. Growing pains for global monitoring of societal events. Science 353, 1502–1503. doi:10.1126/science.aaf6758
Optional: Social networks
- Alatas, V., Banerjee, A., Chandrasekhar, A.G., Hanna, R., Olken, B.A., 2016. Network Structure and the Aggregation of Information: Theory and Evidence from Indonesia. American Economic Review 106, 1663–1704. doi:10.1257/aer.20140705
- Aral, S., Walker, D., 2012. Identifying Influential and Susceptible Members of Social Networks. Science 337, 337–341. doi:10.1126/science.1215842
- Banerjee, A., Chandrasekhar, A.G., Duflo, E., Jackson, M.O., 2014. Gossip: Identifying Central Individuals in a Social Network (Working Paper No. 20422). National Bureau of Economic Research.
- Björkegren, D., 2019. The Adoption of Network Goods: Evidence from the Spread of Mobile Phones in Rwanda. Rev Econ Stud. https://doi.org/10.1093/restud/rdy024
- Chuang, Y., Schechter, L., 2015. Social Networks in Developing Countries. Annu. Rev. Resour. Econ. 7, 451–472.
-
Eubank, N., 2019. Social Networks and the Political Salience of Ethnicity. QJPS 14, 1–39. https://doi.org/10.1561/100.00017044
- Ferraz, Claudio, and Frederico Finan. “Exposing Corrupt Politicians: The Effects of Brazil’s Publicly Released Audits on Electoral Outcomes.” The Quarterly Journal of Economics 123, no. 2 (May 1, 2008): 703–45. doi:10.1162/qjec.2008.123.2.703.
- Khwaja, Asim Ijaz, and Atif Mian, 2005. “Do Lenders Favor Politically Connected Firms? Rent Provision in an Emerging Financial Market.” The Quarterly Journal of Economics 120, no. 4: 1371–1411. doi:10.1162/003355305775097524.
- Palla, G., Barabási, A.-L., Vicsek, T., 2007. Quantifying social group evolution. Nature 446, 664–667. https://doi.org/10.1038/nature05670
- Ugander, J., Backstrom, L., Marlow, C., Kleinberg, J., 2012. Structural diversity in social contagion. Proceedings of the National Academy of Sciences 201116502.
Optional: Agriculture, Environment & Sustainability
- Annan, K., 2018. Data can help to end malnutrition across Africa. Nature. https://doi.org/10.1038/d41586-018-02386-3
- Auffhammer, M., Hsiang, S., Schlenker, W., Sobel, A., 2013. Using Weather Data and Climate Model Output in Economic Analyses of Climate Change. Review of Environmental Economics and Policy 7.
- BenYishay, A., Heuser, S., Runfola, D., Trichler, R., 2017. Indigenous land rights and deforestation: Evidence from the Brazilian Amazon. Journal of Environmental Economics and Management, Special issue on environmental economics in developing countries 86, 29–47. https://doi.org/10.1016/j.jeem.2017.07.008
- Burke, M., Lobell, D.B., 2017. Satellite-based assessment of yield variation and its determinants in smallholder African systems. PNAS 201616919. doi:10.1073/pnas.1616919114 [blog post]
- Cole, S., Fernando, A.N., 2016. Mobile’izing Agricultural Advice: Technology Adoption, Diffusion and Sustainability. Working paper.
- Eaton, E., Gomes, C.P., Williams, B., 2014. Computational Sustainability. AI Magazine 35, 3–7.
- Ermon, S., Xue, Y., Toth, R., Dilkina, B., Bernstein, R., Damoulas, T., Clark, P., DeGloria, S., Mude, A., Barrett, C., Gomes, C.P., 2015. Learning Large-scale Dynamic Discrete Choice Models of Spatio-temporal Preferences with Application to Migratory Pastoralism in East Africa, in: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI’15. AAAI Press, Austin, Texas, pp. 644–650.
-
Fowlie, M., Rubin, E.A., Walker, R., 2019. Bringing Satellite-Based Air Quality Estimates Down to Earth (Working Paper No. 25560). National Bureau of Economic Research. https://doi.org/10.3386/w25560
- Gomes, C., 2009. Computational Sustainability: Computational methods for a sustainable environment, economy, and society. The Bridge 39, 5–13.
-
Gurumurthy, S., Yu, L., Zhang, C., Jin, Y., Li, W., Zhang, H., Fang, F., 2018. Exploiting Data and Human Knowledge for Predicting Wildlife Poaching. Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable Societies (COMPASS) – COMPASS ’18 1–8. https://doi.org/10.1145/3209811.3209879
-
Heft-Neal, S., Burney, J., Bendavid, E., Voss, K.K., Burke, M., 2020. Dust pollution from the Sahara and African infant mortality. Nature Sustainability 3, 863–871. https://doi.org/10.1038/s41893-020-0562-1
- Lloyd, C.T., Sorichetta, A., Tatem, A.J., 2017. High resolution global gridded data for use in population studies. Scientific Data 4, 170001. doi:10.1038/sdata.2017.1
-
Lobell, D.B., Azzari, G., Burke, M., Gourlay, S., Jin, Z., Kilic, T., Murray, S., 2018. Eyes in the sky, boots on the ground: assessing satellite-and ground-based approaches to crop yield measurement and analysis in Uganda. The World Bank.
- Lu, X., Wrathall, D.J., Sundsøy, P.R., Nadiruzzaman, M., Wetter, E., Iqbal, A., Qureshi, T., Tatem, A.J., Canright, G.S., Engø-Monsen, K., Bengtsson, L., 2016. Detecting climate adaptation with mobile network data in Bangladesh: anomalies in communication, mobility and consumption patterns during cyclone Mahasen. Climatic Change 1–15.
- Nakasone, E., Torero, M., Minten, B., 2014. The Power of Information: The ICT Revolution in Agricultural Development, Annual Review of Resource Economics 6, 533–550. doi:10.1146/annurev-resource-100913-012714
-
Nolte, C., 2020. High-resolution land value maps reveal underestimation of conservation costs in the United States. PNAS 117, 29577–29583. https://doi.org/10.1073/pnas.2012865117
- On et al, 2019. Can SMS-extension increase farmer experimentation? Evidence from Six RCTs in East Africa. Working Paper.
-
Wang, A.X., Tran, C., Desai, N., Lobell, D., Ermon, S., 2018. Deep Transfer Learning for Crop Yield Prediction with Remote Sensing Data, in: Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable Societies. ACM, p. 50.