
JavaScript III
INFO 253A: Front End Web Architecture

Kay Ashaolu

ECMAScript, what is that?
ECMAScript is technically the JavaScript language
standard
Other languages have adopted some of this standard
(e.g. ActionScript)
Lays out the features of JavaScript to be agreed upon

So many versions...
Figuring out which browser is running which version
of ECMAScript could get daunting
Browsers also do not simply implement the entire
version
A browser update could add support to single
particular feature

What if you actually want to
use the newer features

That person that never updates IE will not be able to
execute your JavaScript
That person that found a way to not automatically
update Chrome will not be able to see your site

Solution: Transpiler
Similar to a compiler, but converts JavaScript to
JavaScript
Converts Javascript code written in a higher version
into lower version JavaScript code
This enables developers to use newer features, and
users with older browsers able to execute the code

Example ES6 Code
class Planet {

 constructor (mass, moons) {
 this.mass = mass;
 this.moons = moons || 0;
 }

 reportMoons () {
 console.log(`I have ${this.moons} moons.`)
 }
}

1
2
3
4
5
6
7
8
9

10
11

Complied ES5 Code
var _createClass = function () { function defineProperties(target, props) {..
defineProperties(Constructor, staticProps); return Constructor; }; }();

function _classCallCheck(instance, Constructor) {
 if (!(instance instanceof Constructor)) {
 throw new TypeError("Cannot call a class as a function");
 }
}

var Planet = function () {
 function Planet(mass, moons) {
 _classCallCheck(this, Planet);

 this.mass = mass;
 this.moons = moons || 0;
 }

 _createClass(Planet, [{
 key: 'reportMoons',
 value: function reportMoons() {
 console.log('I have ' + this.moons + ' moons.');
 }
 }]);

 return Planet;
}();

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Using Babel
Babel is a transpiler that accomplishes conversion
There is an entire build environment, using webpack
4, babel, and npm to set up
For this week, please use the latest version of Chrome
or Firefox to run your Javascript

Any Questions?

Syntactic Sugar
A lot of improvements to language focuses on changing

syntax to make it easier to accomplish a certain goal
Let's talk about some of those features in ES6

Let and Scope
Let creates a variable with scope
Scope is a term that defines a boundary where
variables live
Scope is how you can ensure content inside a function
is not affected by the outside
Scope in Javascript is largely defined by curly brackets
('{}')

Let example
let a = 50;
let b = 100;
if (true) {
 let a = 60;
 var c = 10;
 console.log(a/c); // 6
 console.log(b/c); // 10
}
console.log(c); // 10
console.log(a); // 50

1
2
3
4
5
6
7
8
9

10

Let example explained
The variable a is found both in the scope of this script,
and in the scope of the if statement block
The variable a within the block can be considered a
different variable than the variable a outside the block

Const
There a times where you do not want a variable to
change after assignment
For example, if you have a variable that is set to the
number PI
You wouldn't want that variable PI to change during
your program

Const Example
const b = "Constant variable";
b = "Assigning new value"; // shows error.

const LANGUAGES = ['Js', 'Ruby', 'Python', 'Go'];
LANGUAGES = "Javascript"; // shows error.

LANGUAGES.push('Java'); // Works fine.
console.log(LANGUAGES); // ['Js', 'Ruby', 'Python', 'Go', 'Java'

1
2
3
4
5
6
7
8

Const example explained
The variable LANGUAGES can not be changed
However, what LANGUAGES points to, if it is mutable
can change

Why use let and const?
Cleaner understanding of the lifespan of a variable
Reduce coding mistakes by ensuring variables that
shouldn't change does not

Arrow Functions
There is a new way of defining functions
There are a few reasons for this (and that's actually a
pun, but you can look that up to figure it out)
This new way of writing function also helps with
clearly defining scope

Arrow Functions Example
function oldOne(name) {
 console.log("Hello " + name);
}

oldOne("Kay");

// New Syntax
let newOne = (name) => {
 console.log("Hello " + name);
}

newOne("Kay");

1
2
3
4
5
6
7
8
9

10
11
12

What did that do?
The parameters are named in the parenthesies
outside the name of the function
Note how you assign a variable to a function (and can
use let for scope)

Default Parameters
Convenient ability to assign parameters to a function
a value if not specified by the caller

Default Parameter Example
let Func = (a, b = 10) => {
 return a + b;
}
console.log(Func(20)); // 20 + 10 = 30

console.log(Func(20, 50)); // 20 + 50 = 70

let NotWorkingFunction = (a = 10, b) => {
 return a + b;
}
console.log(NotWorkingFunction(20)); // NAN. Not gonna work.

1
2
3
4
5
6
7
8
9

10
11

What did that do?
The function Func sets a default value to the second
parameter
You can pass the second parameter or leave it blank
However order matters. You can't define a default
parameter and then the next parameter does not
have a default value

For...loop
Very nice way of looping through a list of elements
No need to figure out index parameters and value
conditions

For...loop
let arr = [2,3,4,1];
for (let value of arr) {
 console.log(value);
}

1
2
3
4

For...loop explained
The variable 'value' is assigned each element of that
array once
Note you do not have access to the index while using
this construct

Spread Attributes
Ability to define a function with a variable number of
parameters
You do not have to pass an array in order to have a
variable number of parameters

Spread
let SumElements = (...arr) => {
 console.log(arr); // [10, 20, 40, 60, 90]

 let sum = 0;
 for (let element of arr) {
 sum += element;
 }
 console.log(sum);
}

SumElements(10, 20, 40, 60, 90);
SumElements(10, 20, 90);

1
2
3
4
5
6
7
8
9

10
11
12

What did that do?
You can pass a variable number of parameters
Those parameters are avaiable as an array inside the
function

Template Literals
Template literals makes adding variables to your
strings much easier
Many Languages (like Python and Ruby) has this built
into the langauge

Template Literals Example
let name = "Jon Snow";
let msg = `My name is ${name}`;
console.log(msg);

1
2
3

Destructing Objects and
Arrays

Let’s just get into an example

Destructing Objects
Example

let person = {firstName: "Jon", lastName: "Snow", age: 23}
const {firstName, age} = person

console.log(firstName);
console.log(age);

1
2
3
4
5

Destructing Arrays Example
let arr = [1,2,3,4,5,6]
let [a,b,,d,e] = arr

console.log(a);
console.log(b);
console.log(d);
console.log(e);

1
2
3
4
5
6
7

What did that do?
You can do the same thing with arrays
Order of the array that is the result of destructuring
matters
You can skip what you don't want by leaving that
position blank

Questions?

