JavaScript III

INFO 253A: Front End Web Architecture
Kay Ashaolu

ECMAScript, what is that?

e ECMAScript is technically the JavaScript language
standard

e Other languages have adopted some of this standard
(e.g. ActionScript)

e Lays out the features of JavaScript to be agreed upon

SO many versions...

e Figuring out which browser is running which version

of ECMAScript could get daunting
e Browsers also do not simply implement the entire

version
e A browser update could add support to single

particular feature

What if you actually want to
use the newer features

e That person that never updates IE will not be able to
execute your JavaScript

e That person that found a way to not automatically
update Chrome will not be able to see your site

Solution: Transpiler

e Similar to a compiler, but converts JavaScript to
JavaScript

e Converts Javascript code written in a higher version
into lower version JavaScript code

e This enables developers to use newer features, and
users with older browsers able to execute the code

o
= O W o0 JOo ULk WDN K-
~

Example ES6 Code

Planet {
(mass, moons) {

.mass = mass;

.moons = moons || 0;
}
reportMoons () {

console.log(I have ${ .moons}

}

moons.)

Complied ES5 Code

1 _createClass = () { defineProperties(target, props) {..
2 defineProperties(Constructor, staticProps); Constructor; }; }();
3

4 _classCallCheck(instance, Constructor) {

5 (!(instance Constructor)) {

6 TypeError("Cannot call a class as a function");
7 }

8 1}

9

10 Planet = () {

11 Planet (mass, moons) {

12 _classCallCheck(, Planet);

13

14 .mass = mass;

15 .moons = moons || 0;

16 }

17

18 _createClass(Planet, [{

19 key: 'reportMoons',

20 value: reportMoons () {

21 console.log('I have ' + .moons + ' moons.');

22

23 1)

24

25 Planet;

26 }();

Using Babel

e Babelis a transpiler that accomplishes conversion
e There is an entire build environment, using webpack

4, babel, and npm to set up
e For this week, please use the latest version of Chrome

or Firefox to run your Javascript

Any Questions?

Syntactic Sugar

A lot of improvements to language focuses on changing
syntax to make it easier to accomplish a certain goal

Let's talk about some of those features in ES6

Let and Scope

Let creates a variable with scope

Scope is a term that defines a boundary where
variables live

Scope is how you can ensure content inside a function
is not affected by the outside

Scope in Javascript is largely defined by curly brackets

()

}

console.
console.

Let example

50;

100;

) |
a = 60;
c = 10;

console.log(a/c);
console.log(b/c);

log(c);
log(a);

Let example explained

e The variable a is found both in the scope of this script,
and in the scope of the if statement block

e The variable a within the block can be considered a
different variable than the variable a outside the block

Const

e There a times where you do not want a variable to
change after assignment

e For example, if you have a variable that is set to the
number P]

e You wouldn't want that variable Pl to change during
your program

0 J o Ul WIN

Const Example

b = "Constant variable";
b = "Assigning new value";

LANGUAGES = ['Js', 'Ruby', 'Python', 'Go'];
LANGUAGES = "Javascript";

LANGUAGES.push('Java');
console.log(LANGUAGES) ;

Const example explained

e The variable LANGUAGES can not be changed
e However, what LANGUAGES points to, if it is mutable
can change

Why use let and const?

e (Cleaner understanding of the lifespan of a variable
e Reduce coding mistakes by ensuring variables that
shouldn't change does not

Arrow Functions

e There is a new way of defining functions
e There are a few reasons for this (and that's actually a
pun, but you can look that up to figure it out)

e This new way of writing function also helps with
clearly defining scope

Arrow Functions Example

1 0oldOne (name) {

2 console.log("Hello " + name);
3}

4

5 o0ldOne("Kay");

6

7

8 newOne = (name) => {

9 console.log("Hello " + name);
10 }

11

12 newOne("Kay");

What did that do?

e The parameters are named in the parenthesies
outside the name of the function

e Note how you assign a variable to a function (and can
use let for scope)

Default Parameters

e Convenient ability to assign parameters to a function
a value if not specified by the caller

Default Parameter Example

Func = (a, b
a

}

console.log(Func(20));

NotWorkingFunction = (a = 10, b) => {
a + b;

}

1
2
3
4
5
6 console.log(Func(20, 50));
7
8
9
0
1 console.log(NotWorkingFunction(20));

What did that do?

e The function Func sets a default value to the second
parameter

e You can pass the second parameter or leave it blank

e However order matters. You can't define a default

parameter and then the next parameter does not
have a default value

For...loop

e Very nice way of looping through a list of elements
e No need to figure out index parameters and value
conditions

S W IN =

For...loop

arr = [2,3,4,1];
(value arr) {
console.log(value);

For...loop explained

e The variable 'value' is assigned each element of that
array once

e Note you do not have access to the index while using
this construct

Spread Attributes

e Ability to define a function with a variable number of
parameters

e You do not have to pass an array in order to have a
variable number of parameters

Spread

1 SumElements = (...arr) => {

2 console.log(arr);

3

4 sum = 0;

5 (element arr) {
6 sum += element;

7 }

8 console.log(sum);

9 }

10

11 SumElements (10, 20, 40, 60, 90);
12 SumElements (10, 20, 90);

What did that do?

e You can pass a variable number of parameters
e Those parameters are avaiable as an array inside the
function

Template Literals

e Template literals makes adding variables to your
strings much easier

e Many Languages (like Python and Ruby) has this built
into the langauge

Template Literals Example

1 name = "Jon Snow';
2 msg = My name is ${name} ;
3 console.log(msg);

Destructing Objects and
Arrays

e Let's just getinto an example

O s W N -

Destructing Objects
Example

person = {firstName: "Jon", lastName: "Snow", age: 23}
{firstName, age} = person

console.log(firstName) ;
console.log(age);

Destructing Arrays Example

arr = [1,2,3,4,5,6]
[a,b,,d,e] = arr

console.log(a);
console.log(b);
console.log(d);
console.log(e);

SNSoo b Wi

What did that do?

e You can do the same thing with arrays

e Order of the array that is the result of destructuring
matters

e You can skip what you don't want by leaving that
position blank

Questions?

