
Data as a Service
Info 253A: Frontend Web Architecture

Kay Ashaolu

Why data storage?
When we make a web request, where do we get the data from?
When we create data, where do we put it?
Where do "resources" live?

Example: bit.ly
Lots of data to store

Shortcut to url mapping
Statistics about links
Information about users

Example: bit.ly
long url http://news.google.com
short url http://bit.ly/awekl
hit count 482240

long url http://facebook.com/user/profile
short url http://bit.ly/czasw
hit count 11023

long url http://msnbc.com/news/article/
short url http://bit.ly/olkjpl
hit count 1232

Data Storage Design
What is the storage format?
How do we lay out data?
How do we access data?

Why use a file?
http://news.google.com, http://bit.ly/awekl, 482240
http://facebook.com/user/profile, http://bit.ly/czasw, 11023
http://msnbc.com/news/article, http://bit.ly/olkjpl, 1232
What are the pros and cons?

Problems with Files
What if we want to add another field?
What if we want to query different parts of data? How efficient is
this?
What if we have concurrent accesses?
What data structures should we use?

Data Independence
Databases: apps shouldn’t have to worry about these problems!
Underlying storage format independent of application-level logic

Relational Data Stores
RDBMS: Relational Database Management System
Invented in the 1970s
e.g., Oracle, MySQL, Postgres, IBM DB2, Microsoft SQL Server

Relational Model
Reason about sets of facts, or "tables"
Each fact is a "row"
Attributes are "columns" of row

NoSQL
Different approach to data storage
Simple but predictable data models
Often have to build own features
Designed for massive scale-out

Key-Value Store

Pros

Simple API
Easy to understand
performance
Easy to scale and use

Cons

Simple API
Must handle own schema
management
May need to manually
implement search features

put(key, value);
let value = get(key);

1
2

Document Store
{
 "long_url": "http://www.google.com",
 "short_url": "qwelmw",
 "hit_count": 2
}

1
2
3
4
5

No predefined schema
Store handles layout of arbitrary fields
Examples: MongoDB, CouchDB,
Cassandra, Redis

Front End
Since we are on the front end, we don't normally deal with the
database details
What we really need is the ability to reach out to a service that
gives us the capabilities of using a database
Sounds like what we need is an API!

Google Firebase
A NoSQL Cloud database that we can directly use with our React
Applications
Provides an API to save JSON data to the cloud
Gives us the ability to save, access, and search data outside of the
confines of our application
We can write our front end code in React, and use API's to
provide the functionality we need without a webserver

Questions

