
Intro to React
INFO 253A: Frontend Web Architecture

Kay Ashaolu

Now it is time to learn
React

You now have a better handle of JavaScript
It's time now to learn a new way of developing UI in the browser
(and beyond)
Note: there are other extensions to React (e.g.)React 360

https://facebook.github.io/react-360/

Review: React is a library
React is a JavaScript library for building user interfaces
Build declarative components based on the current state of your
application
Differs from the Event Driven approach we have been doing so
far

Example, Event Driven
App

Lets say you have an array of strings, each representing the
subject of a todo
And the HTML code was rendered as follows

<ul id="todos">
 Task 1
 Task 2

1
2
3
4

Example, Event Driven
App

If you wanted to add a new task on a click of a button, what
would you do?
If you wanted to delete a task on a click of the task, what would
you do?

Example, Event Driven
App

To add a new task, you would have to select the #todos ul, and
then manipulate the html so that there is a new li at the end of
the list
To delete a new task you would need to find the right li and
delete that from the tree

Example, Event Driven
App

This is doable, but there are some things to consider:
What happens if there are multiple todo lists in a single page?
What happens if the user tries to add and delete a task at the
same time?

Events add up
You will need to take several precautions to ensure that each
todo list is completely independent and that events do not collide
with each other
This is not trivial to do for large systems

React: a different
approach

React uses a declarative programing paradigm
Instead of worrying about every action that could happen with
your list, you first define what your todo list would look like, given
an array of strings.
You create a component using your above defintion containing
state that contains the titles of all of the tasks
On click events, you modify this internal state and the
component will update itself

Lets then learn React
At this point your browser will not understand your code
Reason 1: some browsers do not understand ES6 JavaScript
Reason 2: some React syntax is not valid JavaScript

Let's set up your
environment

Install on your computer
Follow these steps from

NodeJS
Create React App

https://nodejs.org/en/
https://reactjs.org/docs/create-a-new-react-app.html#create-react-app

About your dev server
The NodeJS server you installed uses NodeJS, Babel, and
Webpack, as well as the React codebase to bundle all of your
source Javascript in a single file
The NodeJS server also builds your single HTML page, as well as
keeps a development server running to reload any changes

So without further ado,
let's get into React!

Hello World
src/index.js

import React from "react";
import ReactDOM from "react-dom";

const jsx_element = <h1>Hello, world!</h1>;
const dom_element = document.getElementById('root');
ReactDOM.render(jsx_element, dom_element);

1
2
3
4
5
6

Hello World
src/index.html

<!DOCTYPE html>
<html lang="en">
<head></head>
<body>
 <div id="root"></div>
</body>
</html>

1
2
3
4
5
6
7

Hello World Explained:
index.html

Your index.html file is an empty file that contains one empty div
in the body section
Note that the empty div's id is "root"
This div is the entry point for our react app: we will tell React in
our script to replace this div with our react application
This html file will largely remain unchanged

Hello World Explained:
index.js

We are first importing the React and ReactDOM packages into
our JavaScript
Next we are telling ReactDOM to render given:
1. The content of your website
2. What element in your index.html file that will house your

React App

Hello World Explained:
JSX

JSX stands for JavaScript XML
JSX is an extension of JavaScript that enables you to write HTML
like syntax directly in your Javascript
This enables the ability to write HTML templates directly into your
JavaScript code
You can also embed expressions, variables, and properties
directly into JSX

Example
src/index.js

let formatName = (user) => {
 return user.firstName + ' ' + user.lastName;
}
const user = {
 firstName: 'Harper',
 lastName: 'Perez'
};
const element = (
 <h1>
 Hello, {formatName(user)}!
 </h1>
);
ReactDOM.render(
 element,
 document.getElementById('root')
);

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Example explained
Note: the index.html has not changed. To use React for your
entire app, you can define a single div in the body that is React's
entry point
We defined a function called formatName that takes a object that
has two properties: a firstName and a lastName
The formatName function returns a single string with both of
those elements
We use this function 'formatName' inside of our JSX code (the
const element)
This shows how you can use these properties within your JSX
code

Why JSX?
Remember separating content from presentation?
Separating HTML (content) from CSS (presentation) is core to the
web
However once we start using JavaScript, we have the ability to
change the HTML rendered on the page
That means HTML code can possibly be throughout our
JavaScript codebase
JSX gives us the ability to write out templated HTML code in a
very intuitive fashion

Another Example
src/index.js

import React from "react";
import ReactDOM from "react-dom";

function tick() {
 const element = (
 <div>
 <h1>Hello, world!</h1>
 <h2>It is {new Date().toLocaleTimeString()}.</h2>
 </div>
);
 ReactDOM.render(element, document.getElementById('root'));
}
setInterval(tick, 1000);

1
2
3
4
5
6
7
8
9

10
11
12
13

Wait, what?
Every call to ReactDOM.render tells React to re-render elments
given the data that it currently has
The code setInterval(tick, 1000) is a special function that tells
JavaScript to execute the tick function every 1000 millliseconds.
The tick function then defines the element and passes in its
properties (namely {new Date().toLocaleTimeString()}) before that
components is rendered
This is why you see the clock ticking every second

Components
This is one of the things I like the most about React
The focus on components as independent, resusable pieces that
can be placed anywhere
This uses the composability relationship: each element can be
composed by other elements

Components
Using a combination of JSX and JavaScript, you can bundle look
and feel and functionality in a single JavaScript class
You can consider these React Elements and HTML Elements that
you can place wherever you like
Let's get into the anatomy of a Component

Component Example
import React from "react";
import ReactDOM from "react-dom";

function FormatName(props) {
 return (
 <h1>
 Hello, {props.firstName} {props.lastName}!
 </h1>
);
}

ReactDOM.render(
 <FormatName firstName="Kay" lastName="Ashaolu" />,
 document.getElementById('root')
);

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Component Example
Explained

We are creating a component by creating a function
The name of the function (i.e. FormatName) is the name of the
element
The React library takes that function and creates a component
out of it that can be used

Props
A parameter called props is passed into this function
props is an object that contains all of the attributes and values
that are passed into the element

Component Instance
Properties

When you add the attribute firstName="Kay", this props object
will have a key named "firstName"
And a value named "Kay"
These properties are immutable

<FormatName firstName="Kay" lastName="Ashaolu" />,1

Return
What the function returns is the "html" that is generated by the
component
This function is executed and the "html" is generated in a number
of areas in react (e.g. on a call on ReactDOM.render())
This function returns JSX code that the component would render
into

Questions?

