
React Hooks I
INFO 253A: Frontend Web Architecture

Kay Ashaolu

What are Hooks?
Hooks are a way to be able to use the full functionality of React in
a more functional programming kind of way
You no longer require JavaScript classes to write fully fledged
React Components
I have not taught ES6 classes nor React Class components
because of this move

Why?
In my opinion, React have always embraced the encapsulating
properties of a function conjoined with it's simplicity.
The concept of having a component that does not depend on
anything else marries well with the function concept of the result
being dependent on the inputs of the function
The abstraction of a function can be elegantly used in this
context

But why hooks?
Functional components already did exist in React before hooks
However they were limited in what they can do

They can accept properties and render HTML based on their
properties
But they couldn't tie into some of the more fundamental and
advanced features of React
Class based components could define special functions that
had special properties that "hooked" into React functionality

But with hooks, functions also have the same ability

Let's start with an
example: useState

import React, { useState } from 'react';

function Example() {
 // Declare a new state variable, which we'll call "count"
 const [count, setCount] = useState(0);

 return (
 <div>
 <p>You clicked {count} times</p>
 <button onClick={() => setCount(count + 1)}>
 Click me
 </button>
 </div>
);
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

useState example
useState is a Hook
the useState function returns two elements: a current state value
and a function that enables you to update
useState takes a single argument: the initial state value.

Now what really is an
Hook?

Hooks are functions that allow you "hook into" React features like
state and what's called "lifecycle" features from function
components
An example of a lifecycle feature is

Execute code when component is first created
Execute code when component updates

What is state in React?
A state variable is a single piece of data that resides within each
component
Each instance of the component "remembers" its own state
When any state variable is changed, React re-renders the
component, incorporating any changes

Let's go back to our
example

import React, { useState } from 'react';

function Example() {
 // Declare a new state variable, which we'll call "count"
 const [count, setCount] = useState(0);

 return (
 <div>
 <p>You clicked {count} times</p>
 <button onClick={() => setCount(count + 1)}>
 Click me
 </button>
 </div>
);
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

What's happening here?
In our Example component, we set a single element of state
called count
We have access to the current value of count using the "count"
variable, and the function "setCount" that takes one parameter
(future state) that can change the count variable
count, and setCount are declared as const to declaratively state
that they cannot be changed. You cannot change count by
assigning it to another value. But you must use the setCount
function to change the count value
Using the setCount function is important: when state is changed
using this function React knows to render the component again
after the variable has changed

What's happening here?
Because the button's onClick attribute is set to an anonymous
function that increments count (using the setCount function), the
component is rendered again with the new value of the button

useEffect hook
The useEffect hook gives you access to what's called React's
"lifecycle features"
Lifecycle features in this case means access to special times in
the creation, operation, and removal of a componnet.
useEffect state takes one function that will be executed right after
the component is rendered to the screen.
In effect, this hook gives you the ability to run code on startup,
and when any state changes in the component, and when the
component is removed

useEffect Example
useEffect(() => {
 const subscription = props.source.subscribe();
 return () => {
 // Clean up the subscription
 subscription.unsubscribe();
 };
});

1
2
3
4
5
6
7

useEffect Example
useEffect here is passed a function that contains two statements:
First, it is subscribing to whatever props.source.subscribe() is.
This will be done any time this component is rendered to the
screen
Second, if this component is removed, then the function that is
returned will execute (the unsubscribe action)
This function it is returning enables you to clean up any actions
that may not be needed anymore

Grand Example
import React, { useState, useEffect } from 'react';
import ReactDOM from 'react-dom';

function Weather(props) {

 const [temp, setTemp] = useState(0);

 let getWeatherData = async () => {
 let response = await fetch(`https://api.openweathermap.org/data/2.5/weather?

 if (!response.ok) {
 throw new Error(`HTTP error! status: ${response.status}`);
 } else {
 return response.json();
 }

}

 useEffect(() => {

 getWeatherData().then((response) => {
 setTemp(response.main.temp);
 }).catch(e => console.log(e));;
 })

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Grand Example
return (
 <div>
 The temperature of {props.location} is {temp}
 </div>
);

}

function App(props) {
 return (
 <div>
 <Weather location="Berkeley,ca" />
 <Weather location="Concord,ca" />
 </div>
);
}

ReactDOM.render(
<App />,
document.getElementById('root')
);

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

Grand Example
Note we are using both useState to keep the state of
the temperature and useEffect to make an API call to
the weather endpoint to get the weather
The function in useEffect is executed on every render,
but since we only pass a property of the current
location, it only needs to be rendered once

Questions?

