
React Hooks II
INFO 253A: Frontend Web Architecture

Kay Ashaolu

Rules of Hooks
Must use hooks in functional React components
Must use hooks at the top level of your components, or in your
custom hooks

This means don't use hooks inside conditionals either
This is because React relies on the order of hooks to
determine functionality
If the order of hooks executed changes dynamically during
execution, very hard to figure out bugs will appear

Custom Hooks
React provides the ability to write your own hooks
Custom Hooks provide another way to share stateful logic across
components
What is this stateful logic you speak of? Or what does that even
mean?

Custom Hooks
As your front end application becomes more complex, it
becomes harder to manage all of the state variables as well as all
of the logic that modifies those state variables
What happens when you want to have some state that affects
multiple components?
React has provided a few ways of accomplishing this task, but
typically involve creating more components that contain the
shared state at a higher level.
Hooks provide an alternative path that does not necessiate these
"higher order components"

Setup Code
import React, { useState, useEffect } from 'react';

function FriendStatus(props) {
 const [isOnline, setIsOnline] = useState(null);
 useEffect(() => {
 function handleStatusChange(status) {
 setIsOnline(status.isOnline);
 }
 ChatAPI.subscribeToFriendStatus(props.friend.id, handleStatusChange);
 return () => {
 ChatAPI.unsubscribeFromFriendStatus(props.friend.id, handleStatusChange);
 };
 });

 if (isOnline === null) {
 return 'Loading...';
 }
 return isOnline ? 'Online' : 'Offline';
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Custom Hooks Example

We have a component called FriendStatus that
displays "Online" if the Friend was online and "Offline"
if not
Note the use of the useEffect hook to define what
should happen when the component is created or is
updated, and what should happen when it
unsubscribes.

Custom Hooks Example

However imagine if we had another component, a
contact list, where we wanted to highlight a person's
name if they were online.
We would write out the logic, but it would require
repeating a lot of the same code

Setup code 2
import React, { useState, useEffect } from 'react';

function FriendListItem(props) {
 const [isOnline, setIsOnline] = useState(null);
 useEffect(() => {
 function handleStatusChange(status) {
 setIsOnline(status.isOnline);
 }
 ChatAPI.subscribeToFriendStatus(props.friend.id, handleStatusChange);
 return () => {
 ChatAPI.unsubscribeFromFriendStatus(props.friend.id, handleStatusChange);
 };
 });

 return (
 <li style={{ color: isOnline ? 'green' : 'black' }}>
 {props.friend.name}

);
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Refactoring?
In previous classes I've shown the benefits of putting common
code into functions and using that function instead
Benefits include

not repeating code which can be error prone
once you update behavior for the shared function it is
available everywhere
code is easier to read

Let's look at a custom
hook

import { useState, useEffect } from 'react';

function useFriendStatus(friendID) {
 const [isOnline, setIsOnline] = useState(null);

 useEffect(() => {
 function handleStatusChange(status) {
 setIsOnline(status.isOnline);
 }

 ChatAPI.subscribeToFriendStatus(friendID, handleStatusChange);
 return () => {
 ChatAPI.unsubscribeFromFriendStatus(friendID, handleStatusChan
 };
 });

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

What's happening here?
The amazing thing is that a custom hook is also just another
function: inputs, outputs, and logic
You can use other hooks inside custom hooks
You are writing stateful logic that can be shared across
components
You can also fully control the inputs and outputs of your hook. In
this case, we pass in a friend ID and return whether that friend is
online

How to use custom hook
function FriendStatus(props) {
 const isOnline = useFriendStatus(props.friend.id);

 if (isOnline === null) {
 return 'Loading...';
 }
 return isOnline ? 'Online' : 'Offline';
}

1
2
3
4
5
6
7
8

function FriendStatus(props) {
 const isOnline = useFriendStatus(props.friend.id);

 if (isOnline === null) {
 return 'Loading...';
 }
 return isOnline ? 'Online' : 'Offline';
}

1
2
3
4
5
6
7
8

function FriendListItem(props) {
 const isOnline = useFriendStatus(props.friend.id);

 return (
 <li style={{ color: isOnline ? 'green' : 'black' }}>
 {props.friend.name}

);

1
2
3
4
5
6
7
8

That was elegant
Wasn't it? Those two components are now using the
useFriendStatus custom hook, and thus reduced a lot of repeated
code.
If anything were to change with the API or the handling of the API
results, we could simply update the useFriendStatus hook and all
components using it would be updated

Demo

