REST

INFO 253A: Frontend Web Architecture
Kay Ashaolu

REST

Representational State Transfer

Good news, everyone!

e You already know REST

e Representations (HTML! but also XML, JSON)
e State

e Transfer

History

e Roy Fielding co-wrote HTTP specs
e Defined REST in his 2000 PhD dissertations
e Defined core set of constraints and why they were important

Constraints

e Client-server: Two separate systems talk to each other through a
well defined interface

e Stateless: No context is stored between requests
e Cacheable: Clients or intermediaries can cache results, and
requests and results can specify caching information

Constraints

e Layered: Requests can go through intermediaries (proxies)
e Uniform Interface: The protocol between client and server
follows the same rules regardless of the specific application

Client-Server

Pros Cons
° Browsgrs don.'t Celns whatweb o Qverhead of transferring data
server is providing e Fewer, simpler failure modes

representations, or which

database is holding data
e Servers don't care which

clients are connecting

Stateless

e Simplifies server design and
storage

e Simplifies request grammar

e |mproves scalability, error
recovery

e Overhead of transferring
client state

e Not convenient for
interactivity at protocol level

Cacheable

Pros Cons
e Browsers can store CSS and e Cache invalidation is hard
Javascript e Can't rely on updated
e Businesses can cache resources updating
responses, even from external "everywhere"
sites

e Servers can specify how long
things should be cached for

Uniform Interface

Pros Cons
C ;Iient and server know how to ¢ For really unique applications,
|nter.act .regardless of must jam into old paradigms
application hosted e Difficult to optimize for
e Pinterest uses same interface performance of single
as Yelp application

e Wider variety of clients that
can handle multiple
applications

REST is not HTTP

e Remember HTTP is a transport protocol: a tube!
e REST is a set of constraints on how to use that tube
e \We could use other tubes, like FTP, SMTP

Web is RESTful

e Web is build on these ideas
e Better leverage attained by embracing REST
e Flexibility, scalability, visibility, simplicity

How to Spot RESTfulness

e Should think through constraints, but here are some heuristics

Uses HTTP

e REST is the underlying architectural principle of the web

e The web primarily uses the HTTP protocol
e The way browsers interface with web servers is inherently

RESTFul if you think about it

Uses HTTP Commands

e GET, POST, PUT...
e vs using POST for everything

Uses HTTP response
codes

e 404 Not Found, 200 OK
e vs. always responding with 200 OK but has an error message

URLs point to resources

e /blog, /api/messages/34
e vs. URLs pointing to commands: /api/createBlog,
/api/getMessage/34

Representation links

e A representation links to new possible actions
e Client only needs to have representation
e Hypermedia as the engine of application state (HATEOAS)

O & W N

Example

"business": "http://yelp.com/biz/27",
"user": "http://yelp.com/user/5",
"review_text": "..."

O 00O O U1 s WDN -

Counter Example

data = {
"business_ id": 27,
"user id": 5
"review_ text":

}

fetch(http://yelp.com/biz/${data["business id"]}).then((response) => ({

})i

Uses headers for meta
data

e Content-Type XML or JSON
e vs. response has extra meta data in XML

Questions?

