
REST
INFO 253A: Frontend Web Architecture

Kay Ashaolu

REST
Representational State Transfer

Good news, everyone!
You already know REST
Representations (HTML! but also XML, JSON)
State
Transfer

History
Roy Fielding co-wrote HTTP specs
Defined REST in his 2000 PhD dissertations
Defined core set of constraints and why they were important

Constraints
Client-server: Two separate systems talk to each other through a
well defined interface
Stateless: No context is stored between requests
Cacheable: Clients or intermediaries can cache results, and
requests and results can specify caching information

Constraints
Layered: Requests can go through intermediaries (proxies)
Uniform Interface: The protocol between client and server
follows the same rules regardless of the specific application

Client-Server
Pros

Browsers don't care what web
server is providing
representations, or which
database is holding data
Servers don't care which
clients are connecting

Cons

Overhead of transferring data
Fewer, simpler failure modes

Stateless
Pros

Simplifies server design and
storage
Simplifies request grammar
Improves scalability, error
recovery

Cons

Overhead of transferring
client state
Not convenient for
interactivity at protocol level

Cacheable
Pros

Browsers can store CSS and
JavaScript
Businesses can cache
responses, even from external
sites
Servers can specify how long
things should be cached for

Cons

Cache invalidation is hard
Can't rely on updated
resources updating
"everywhere"

Uniform Interface
Pros

Client and server know how to
interact regardless of
application hosted
Pinterest uses same interface
as Yelp
Wider variety of clients that
can handle multiple
applications

Cons

For really unique applications,
must jam into old paradigms
Difficult to optimize for
performance of single
application

REST is not HTTP
Remember HTTP is a transport protocol: a tube!
REST is a set of constraints on how to use that tube
We could use other tubes, like FTP, SMTP

Web is RESTful
Web is build on these ideas
Better leverage attained by embracing REST
Flexibility, scalability, visibility, simplicity

How to Spot RESTfulness
Should think through constraints, but here are some heuristics

Uses HTTP
REST is the underlying architectural principle of the web
The web primarily uses the HTTP protocol
The way browsers interface with web servers is inherently
RESTFul if you think about it

Uses HTTP Commands
GET, POST, PUT...
vs using POST for everything

Uses HTTP response
codes

404 Not Found, 200 OK
vs. always responding with 200 OK but has an error message

URLs point to resources
/blog, /api/messages/34
vs. URLs pointing to commands: /api/createBlog,
/api/getMessage/34

Representation links
A representation links to new possible actions
Client only needs to have representation
Hypermedia as the engine of application state (HATEOAS)

Example
{
 "business": "http://yelp.com/biz/27",
 "user": "http://yelp.com/user/5",
 "review_text": "..."
}

1
2
3
4
5

Counter Example
data = {
 "business_id": 27,
 "user_id": 5
 "review_text": "..."
}

fetch(`http://yelp.com/biz/${data["business_id"]}`).then((response) => {
 ...
});

1
2
3
4
5
6
7
8
9

Uses headers for meta
data

Content-Type XML or JSON
vs. response has extra meta data in XML

Questions?

